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EVALUATION

The process of system identification consists of postulating a valid analytical
mode} for the system under consideration and perferming tests on the system to
completely specify or "identify" the parameters which describe the system
analytical model. For example, a linear systern is completely characterized by its

The system identification process for this linear system
The

impulse response, h(t).
analytical model consists of any procedure that completely determines h(t).
present consideration in the area of nonlinear system identification is the deriva-
tion of a valid analytical model for the nonlinear system under consideration.

The identification procedure successfully studied is a black box technique
where only irput and output terminal measurements of the nonlinear system are
used. The identification technique is applicable to a broad class of weakly
noniinear systems whose response can be characterized by a finite Volterra series.
The identification procedure involves processing the input and output responses of
a nonlinear system to obtain a set of linearly independent equations which uniquely
define the parameters of a functional form of the second-order impulsa respo.nse.
Theoretically, the proposed identification technique represents a significant im-
provement over existing identification techniques tecause of its black box formula-
tion. The intent of the study was to determine where this identification technique
can be practically implemented and maintain an advantage over existing tecniques.
To these ends, the practical implementation constraints have been developed,

quantified and assessed for three candidate measurement configurations. The

robustness of the technique to nonlinear circuits with many and/or repeated poles

i3 the subject of Part Il of this final report.
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The study effort successfully accomplished, in two parts, a Part | on
implementation feasibility to determine the practical methods and constraints of
implementing three candidate measurement configurations - digital, analog and
hybrid. The second part of the study effort successfully focused on the numerical
comnputation -omplexity aspect of the identification technique processing to
determine the class(es) of nonlinear systems for which the technique can be
practically applied. The primary computational complexity arises from the
required matrix inversions for the residue evaluations. Toward the goal of
alleviating these difficulties, matrix scaling, band lirmited approaches, single

exponential inputs (multiple input times) and dominant pole concepis were also

developed, quantified and assessed in the successful pursuit of the overall study

objectives.
Dol J-lireslly

DANIEL J. KENN_ALY
Project Engineer
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TECHNICAL REPORT SUMMARY FOR RADC-~-TR-79-
NONLINEAR SYSTEM IDENTIFICATION STUDY
PART II. COMPUTATIONAL COMPLEXITY STUDY

A, STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the
practical feasibility of a nonlinear system identification tech-
nique. The identification procedure studied is a black box
technique where only input and output terminal measurements of
the nonlinear system are used. The identification technique is
applicable to a broad class of weakly nonlinear systems whose
response can be characterized by a finite Volterra series. The
identification procedure involves processing the input and out-
put responses of a nonlinear system to obtain a set of linearly
independent equations that uniquely define the parameters of a
functional form of the second-order impulse response. Theoreti-
cally, the proposed identification technique represents a signif-
icant improvement over existing identification techniques because
of its black box formulation. The intent of the study is to de-
termine if this identification technique can be practically imple-
mented and maintain an advantage over existing techniques.

The study effort is divided into two parts:

Part I An implementation feasibility study to determine
practical methods of implementing the measurement
scheme - both digital and analog - and to evaluate
the requirements for the components of the measure-
ment scheme.

Part II A computational complexity study of the identifica-
tion technique processing to determine the class of
nonlinear systems to which the technique can be
practically applied.

This final report represents the results of Part II of the
study effort - the computational complexity study.

B. SUMMARY OF RESULTS AND CONCLUSIONS

This part of the study effort focused on identifying the com-
putational limitations of the identification technique that

EEEEEE————————— T e VTR I AN AN




restrict its application to practical systems and on developing
methods of easing these limitations.

The primary computational limitations of the identification
technique arise from the required matrix inversions necessary to
evaluate the system residues. The dynamic range of the matrix
entries increases as the matrix size increases and these entries
can violate the dynamic range constraints of typical general-
purpose computers even for moderate size systems. This problem
is complicated further when the linear system transfer function
is wide band.

Three approaches are suggested for alleviating these computa-
tional problems:

(1) Matrix scaling
(2) Reduction of the order of Yz(s)

(3) Computational scaling for the total identification tech-
nique.

The third approach was not addressed in detail in the study
but requires a continuous scaling of matrix inversion operations
to take advantage of the total dynamic range of the digital
computer.

known algorithms. The results of this investigation demonstrate
that these techniques offer some relief of the computational
problems but do not substantially increase the applicability of
the identification technique.

Matrix scaling techniques were investigated on the basis of i

A primary conclusion of this study is that the order of the
second order response must be reduced as much as possible while
still maintaining the integrity of the identification technique.
This approach dictates a more extensive measurement process for
the identification technique. Several approaches to accomplish
this reduction of the order of Ys(s) are postulated in this
report. These approaches include:

(1) Restricted Frequency Approaches - including use of a
low-pass filter at the system output, and appropriate
selection of integration time,

(2) Single Exponential Input - the input signal consists of
& single exponential function x(t) = e-®il instead of

N -ait
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The input is applied N times (changing aj) and an appro-
priate set of measurements is taken. The identification
process is essentially repeated N times to generate the

required set of linearly independent equations.

(3) Dominant Pole Concept - The linear transfer function is
modeled by a lower order transfer function where the
dominant poles are used in the transfer function model.

The computational problem introduced by a wide-band system,
i.e., a near singular matrix to be inverted, can be avoided by
the following method. The poles of Ya(s) of the form Aj + % AJ
are modeled as single poles at Aj and the residues are combined
to obtain the total residue. A modification of the identifica-
tion technique allows identification of the Aklkz quantities.

This has been demonstrated for two pairs of poles of the form
Ay, + A, = A,

1 J J

The issue of the isolation of the second-order response from

the total system response was also addressed in this study. It
was shown that it is not necessary to isolate y2(t) from
yl(t) + y,(t) to identify the linear and second-order impulse
résponses, However, it was also shown that y,(t) must be isclated
from third and higher-order system responses %n order to identify
the second-order impulse response, hz(tl’t2)'

vii
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SECTION I

INTRODUCTION

A. STUDY OBJECTIVES

The basic objective of this study effort is to evaluate the
practical feasibility of a nonlinear system identification tech-
nique. The identification procedure studied is a black box
technique where only input and output terminal measurements of
the nonlinear system are used. The identification technique is
applicable to a broad class of weakly nonlinear systems whose
response can be characterized by a finite Volterra series. The
identification procedure involves processing the input and out-
put responses of a nonlinear system to obtain a set of linearly
independent equations that uniquely define the parameters of a
functional form of the second-order impulse response. Theoreti-
cally, the proposed identification technique represents a signif-
icant improvement over existing identification techniques because
of its black box formulation. The intent of the study is to deter-
mine if this identification technique can be practically impie-
mented and maintain an advantage over existiny techniques.

The study effort is divided into two parts:

Part 1 An implementation feasibility study to determine
practical methods of implementing the measurement
scheme - both digital and analog - and to evaluate
the requirements for the components of the measure-
ment scheme.

Part 11 A computational complexity study of the identifica-
tion technique processing to determine the class of
nonlinear systems to which the technique can be
practically applied.

This final report represents the results of Part II of the
study effort - the computational complexity study. The imple-
mentation feasibility study results were presented in Part I of
this final report (Reference 1).

B. SUMMARY OF RESULTS AND CONCLUSIONS

This part of the study effort focused on identifying the compu-
tational limitations of the identification technique that
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restrict its application to practical systems and on developing
methods of easing these limitations.

The primary computational limitations of the identification
technique arise from the required matrix inversions necessary to
evaluate the system residues. The dynamic range of the matrix
entries increases as the matrix size increases and these entries
can violate the dynamic range constraints of typical general-
purpose computers even for moderate size systems. This problem
is complicated further when the linear system transfer function
is wide band.

Three approaches are suggested for alleviating these computa-
tional problems:

(1) Matrix Scaling
(2) Reduction of the order of Y2(s)

(3) Computational Scaling for the total identification tech-
nique.

The third approach was not addressed in detail in the study
but requires a continuous scaling c¢f matrix inversion operations
to take advantage of the total dynamic range of the digital
computer.

Matrix scaling techniques were investigated on the basis of
the algorithms developed in Reference 2. The results of this
investigation demonstrate that these techniques offer some relief
of the computational problems but do not substantially increase
the applicability of the identification technique.

A primary conclusion of this study is that the order of the
second order response must be reduced as much as possible while
still maintaining the integrity of the identification technique.
In many instances, this approach dictates a more extensive
measurement process than originally required (Reference 1).
Several approaches to accomplish this reduction of the order of
Y2(s) are postulated in this report. - These approaches include:

(1) Restricted Frequency Approaches -~ including use of a
low-pass filter at the system output, and appropriate
selection of integration time

(2) Single Exponential Input - the input signal consists of
a single exponential function x(t) = e-%i! instead of

N -a,t
I e 1
i=1
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[ The input is applied N times (changing a;) and an appro-
: priate set of measurements is taken. The identification
i process 1ls essentially repeated N times to generate the
| required set nf linearly independent equations.

|

(3) Dominant Pole Concept - The linear transfer function is
modeled by a lower order transfer function where the
dominant poles are used in the transfer function model.

| S The computational problem introduced by a wide-band system,

! - i,e., a near singular matrix to be inverted, can be avoided by

| o the following method. The poles of Yg(s) of the form Ay + Ay = AJ

; ' are modeled as single poles at Aj; and the residues are combibhed

' to obtain the total residue. A modification of the identifica-
tion technique allows identification of the Ap. k, quantities.

; This has been demonstrated for two pairs of poleg of the form

Xi"')\J =AJ.

The issue of the isolation of the second-order response from

z the total system response was also addressed in this study. It
was shown that it is not necessary to isolate yo(t) from

‘ y1(t) + y2(t) to identify the linear and second-order .impulse

| responses. However, it was also shown that ys(t) must be isolated

: from third and higher-order system responses in order to identify

i the second-order impulse response, hg(ty,t2).
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SECTION I1
IDENTIFICATION TECHNIQUE

A. IDENTIFICATION TECHNIQUE BACKGROUND -

The basic objective of this study (Part II) is to investigate N
the computational complexity aspects of an identification tech- :
nique for nonlinear systems. The identification technique is

briefly reviewed in this section. The identification technigue :
is described in detail in the Fart 1 Final Report (Reference 1) !
and is based on the analysis presented in Reference 3. This

technique is a '"black box" procedure in that only measurements at

the system input and output terminals are required. The identi-

fication technique is applicable to a class of weakly nonlinear

systems whose behavior is adequately characterized in terms of a

finite Volterra functional) seriles given by

N N n
y(t) = £ y(t)= ¢ ' h (1qy,...,7 ) N x(t - t)dtr_ (1)
n=1 ° n=1 n*'1 n p=1 P P
where
yn(t) is the n order portion of the response
i denotes an n-fold integration from -« to +«
n
n denotes an n-fold product.
p=ﬁ- denotes the number of terms in the infinite volterra series.
The nth-order Volterra kernel h,(711,...,Tn) can be referred

to as the nth-order nonlinear impulse response (Reference 4). In
actuality, the nonlinear impulse responses may not be identically
zero above order N. However, the finite sum of equation (1) im-
plies that higher-order terms contr:bute negligibly to the output.

The identification technique developed in Reference 3 is de-
signed to identify the parameters of closed-form expressions for
the nonlinear impulse responses, hn(tl, tz,...,tn),




n=1, 2,...,N. The analysis presented in Reference 3 demon-
strates how the technique identifies the parameters of hj(t),
ho(ty, to) and hg(t;, ty, t3z). On the basis of this analysis, it
is believed that the technique is extendable to identification of
higher order nonlinear impulse responses (N > 4)., This study
(Part II) is concerned with the computational aspects of the iden-
tification of the linear and second-order nonlinear impulse

responses, hy(t), ha(ty,t2).

It has been shown (Reference 3) that, when the linear incre-
mental model of a nonlinear system is described by

L e -1
=

ie
hy(t) = i=1 (2)

where Re {Xj} < O and it is assumed that the Ay are distinct,
the second- order nonlinear impulse response can ée expressed in
the symmetrical form (Reference 3):

By t1+ak2t2

M N 1
ha(ty,tg) = L I Ag.k, © U(t, - t)
k1=1 ky=1 <1°2 2 1
M N 2k, f2t ok, 1 3
k1=1 ko=1 172
where
M= N2+ 1, (4)
1 , t >0
U(t) = (5)
0 , t <0

and where the natural frequencies in equation (3) are related to
those in equation (2) according to:

e el st * B Sl it st ad i 1 5.
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to be disTinct, such that Ay - X5 # A, for any

! :
» By = Ay, By = Ag,...ay = Ay, i
& 17 M1 B T g N = N :
é By = Ay T A T 0L ag T Ay = dp, e, age = Ay - Ay :
A BaN+l T M2 T A Bonep T Ap 7 Az Bgng = g = Ay : %
g AN2_N+3 T AN T Air BN2oneg T AN T Aareees %
' 8241 T AN T AN-1 ' (6) i

]
3 The ordering of the ayy terms in equation (3) assumes all ;

the factors Ay - A
Also, the zero entry that resulls from Xy

i,j,k =1,...,N. !
i when 1 = j 1s included only once as the entry ay,;. In addition, 4
i it is readily shown that (Reference 3) i
, ;
A = A for k,.k, < N (7) y
k, ko koky 1°°2 %

i

and that the coefficients of terms in equation(3) having the form

(A"A)t +At :
FRNE SR R 12 ey ;

st - - . s, st ol &
L

AR I T

are identically zero.

The identification technique identifies the parameters of ‘
hga(t1, tp) as represented in equation (3). ;

B. IDENTIFICATION TECHNIQUE DESCRIPTION

The functional form for hg(ty, to) established in equation
(3) implies that the identification of hy(ty, tg) reduces to iden-
tification of the parameters 8Ky s 8Ky s Ak K and N. However,
equations (4) and (6) show that  ay., By Lnﬁ N can be determined
once the linear impulse response 1£ kno%n. Therefore, the task
of identifying these parameters reduces to the task of identify-
ing hj(t). The problem of identifying the coefficients Ak1 kg

still remains.

The identification process separates into two distinct steps:

(1) identification of hy(t); and (2) identification of the A 1k2
quantities of hg(ty, tu). These two steps are considered beﬁow.

.'::;mmmﬂ!_—rw: )

1. Identification of the Linear Impulse Response, hj(t).

¥ |

_ The first step in the identification of hy(t), the linear ’g
; impulse response of a nonlinear system, is to excite the system :4
} ’
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with an input amplitude such that the output is linear. The amp-
iitude of this signal can be determined by exciting the system
with a sinusoidal signal of amplitude A and performing a spectral
analysis of the resultant response. Amplitude A is then adjusted
until the amplitude level of the harmonic frequencies of the
output becomes sufficiently small compared to the level of the
fundamental component. The poles and residues of hji(t) be will
identified using the pencil-of-functions approach (Reference 5).
The pencil-of-functions approach integrates the input to the
linear system and resulting output N times over the real-time
interval (0,T).

It has been shown (Reference 5) that poles ¢f the linear
system satisfy the polynomial equation

N-1i 1/2
I A G =0 (8)
1=0 (F Nz+1] i+1,i+1)

where Ggy+y 1s the Gram determinant shown in equation (9) below:

<y1’Y1> <y1’y2> . <YI'yN+l> <YI ’x2> M <y1 PXN+1>

Vpi¥1> Vpo¥p> oov Vpr¥ney” VoiXp? oo Vpi¥nyy?

Gone1 = YNYLY YN VY s SYNYNe1r” SYNCXRT o YN ¥pNar?
SRgo¥y? Xga¥p> e SHguYNy 7 XgaXp? ... XgiXnye?

KN+10Y1T XN Y27 XN YN XN %7 RN X ey

(9)
and where
t
fxi(r)dt
0 0<t<T
x (t) =
i+1 (10)
0 elsewhere
i=1, , N




dfyi(r)dr 0<t<T
Viag(t) = (11)
0 elsewhere
Further, the residues Ri of the poles Ai satisfy the equation

R = Cly (12)

where

R = residue matrix = R3 (13)

[ ¥,(T)
y3(T)

Y = output matrix = §4(T) (14)

| Ve ()

th

C =N Xx N matrix whose 1, element is defined by

c P _(T) % m+1(T) s
= - ——I+i-m L5)
1 g m=1 (A,)
where
T AJ(T-T)
PJ(T) = [ e x(1)dt (16)
0

- o e Wb e o= i et t

1,4
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References 1 and 3 describe how this processing can be used to
to determine N.

2. Identification of the Second Order Impulse
Response, hz(t1't2)

The second step of the identification procﬁdure is to
identify the unknown parameters of hy(t;, t,). wien h?ftl,tz)
given by:

b

N,

M N g, 1t T
h,(t,,t,) = I I A e UL, ¢
271720 sl km Kike = i
M N By t2+ak2 1 7
+ I I A UCt, - t.) (17)
k =1 k,=1 kyky® 12

the only unknown parameters are the Ayx, ko quantities since M, N,

Akq and Ag, are known from identification of hi(t). A procedure

for determgning the Ak k2 using the pencil-of-functions method is
described in this sectlon.

The identification procedure utilizes the response of
the weakly nonlinear system to a sum of L decaying exponentials
as described by:

-a,t
e 1 , t>0

0

i=1
x(t) =

0 , t <0 (18)

where Re {aj} > 0. The second-order portion of the response to
x(t) is given by

wm bl ol
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k,=1 k=1 i=1 j=1 “1%2

]

oy + aJ + Zakl // L §

(a, +a_ )(a, +a )a, +o, +a +a s - (a +a, ) {

3 Ky’ 4 ke’ 3 ky K, Ky kg }

) 1 1 3
(a., + a, )(a, +a, s + (a, - &, ) 3

J Rl i k2 J k2 1

[y
Sl Ly A

2

a; +a_ + 2ak2 // ;
+ 3
3

(QJ + a, Y(a, + ay )(ui + aj + a, + ak s + a, + aJ (19)
2 2 1 2 !
where ;
uJ # akl for j =1,...,L; k1 =1,...,M ?
ay + oy +a +a ¢#0 for 1,3 =1,...,L; k; = 1,...,M; :
1 2 {
- 1
k2 1,...,N f
akl # akz for k2 =1,...,N; k1 =N+ 1,...,M, %
(20)

The expression in equation (19) is the Laplace trans- ‘
form of a sum of exponential time functions. This sum can be .
interpreted as the impulse response of an equivalent linear sys- }
tem as indicated in Figure 1. In other words, the second-order ;
response ya(t) can be visualized as though it were generated by 4
an equivalent linear system., However, the equivalence 1is valid i
only if the equivalent linear system is considered to be excited
by an impulse. It follows that the problem of identifying
ha(ty,ty) has been reduced to the simpler problem of identifying
a linear system and the pencil-of-functions technique can be used 1

again,
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y =L {Yz(*)>

3 (t) =0 H(s) = Yls)

Figure 1. Equivalent Linear System with Transfer
Function Yz(s)

The system is excited by an input amplitude such that
the output is described by linear and second-order terms, y;(t)
and y2(t). The identification process will operate on the signal
y2(t). For this purpose, the second-order portion of the re-
sponse, yo(t), is isolated from the total response. y2(t) is
obtained by subtracting from the total response, the correspond-
ing linear response yj(t), which is known because h1(t) has been
identified. It is shown in Reference 2 and in Section III.F of
this report that the second-order response ys(t) need not be iso-
lated from the total response for the identification procedure to
work. However, isolation of yo(t) from the total response eases
the mathematical presentation and is assumed at this point.

Once y2(t) is isolated from the total response, the co-
efficients Ak,k, are then evaluated by applying the pencil-of-
functions met%oa to yo(t), treating it as though it were the im-
pulse response of a linear system. This latter step is now dis-
cussed in detail.

From equation (19), the poles of Yz(s) are given by

s = a +a , k,=1,...,M; ko, =1,...,N
kl k2 1 2
§ = -a; + akz, i=1, ,L; k2 = 1, ,N
s=-ai-aj, i,j =1,...,L. (21)
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First, consider poles of the form s = ay =2 Agp; %
= 1,...,N. The terms in Yo (s) corresponaing ta the pole at 2 Ay
are given by

) L L 1 1
Yo, (s)= I I A .
222 (o1 goy M @I, T E S By

If the residue of the pole at 2 )y, as evaluated using the pencil-
of-functions method, is Bpg» 1t follows that

L L 1

z z

=8 2 =1,...,N. (23)
LN TSP CAIE S WI TR

A

This procedure results in identification of N of the coefficients.

Consider next poles of the form s = ak} + ak =A%q+k
or ’

where 2 # m and 2,m = 1,...,N. Since Ay, m <
the terms in Yz(s) corresponding to the pole at Ag Am are given
by
L L
(s) = L I A
m i=1 j=1 *
oy + qJ + 2A2

(o F Xy +Ap(a; +ag i+ Ay

a. + o, + 2A
1 J

1
+ ) )(a + A\ )(a +aJ+)\ +X—_')'(s - - X") . (24)

(a

J

If the residue of the pole at XAy + A, as evaluated using the
pencil-of~functions method, is Blm’ it follows that

L L a, + + 2X
Aam = Fem 121351 (s +)\)(ai+)\J)_(a e )
j AN g 2(%g T ooy 2 ¥ 'm
-1
. oy + ai,+ 2Am
(ag + Aoy + Aoy +o g+ Ap + AN em=1,... N
L #m, £ <m
(25)
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This procedure results in identification of N(N - 1)/2 of the
coefficients.

The remaining unknown N2 coefficients cannot be evalu-
ated directly, as was done in equations (23) and(25), because
the residues of the other poles in Yo(s) involve linear combina-
tions of more than one unknown coefficient. However, if the
number of exponential input signals, L, is set_equal to N, N2
linearly independent equations involving the N2 unknown Ak1k2
coefficients can be obtained by considering the poles of
Y2(s) of the forms =-ay + A3, i =1,...,N; §=1,...,N, in a
manner similar to the agove anaéysis. This fact is proven in
Reference 3. Solution of the N¢ equations completes the identi-
fication process.




SECTION III
SYSTEM COMPLEXITY STUDY

A, COMPUTATIONAL COMPLEXITY CONSIDERATIONS

The analyses of Section I1 and Reference 3 demonstrated that
the theoretical derivation of the identificaticn technique was
restricted to a class of nonlinear systems described by the im-
pulse response of the form

h,(t) = (26)

Although there appears to be no theoretical limitation preventing
the application of the identificatior technique to systems with
multiple-order poles, the analysis has not been done to support
this conclusion. The systems modeled by equation (26) represent
a broad class of nonlinear systems to which the technique can be
applied. Practical limitations of the technique will restrict
the class of systems to a subset of those represented by equa-
tion (26). These practical limitations arise primarily from the
computational requirements of the identification technique proc-
essing scheme. These limitations constrain the maximum value of
N, which restricts application of the technique to systems whose
linear incremental model has N poles or less.

This section investigates these computational limitations,
attempts to establish a maximum value for N, and presents
selected techniques to alleviate these computational problems.

1. Computational Complexity Limitations

The numerical computation requirements of the identi-
fication technique are summarized below. They are:

(1) N numerical integrations of input and output
(N is the order ot the system).

(2) Formation of 2N+ 1 inner product entries for the
Gram matrix.
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(3) Evaluation of determinants of N@N+ 1) matrices.

(4) Solution of a Nth order polynomial equation.
(5) Evaluation of the N° Cy; entries of the C matrix

in the residue equation’
(6) Inversion of an N dimension C matrix.

(7) Solution of the Ak1kz quantities (second-order
system).

The numerical accuracy requirements for these computa-
tions were investigated in Part 1 of this study (Reference 1).
The numerical accuracy required for satisfactory performance of
the identification technique increases significantly with in-
creasing N. The severest computation requirements are imposed by:
(1) the formation and inversion of the C matrix used in the
residue equation R = c-1v; and (2) numerical integration and
formation of the inner products for the appropriate Gram matrix.
These two areas are addressed below.

2. Residue Equation Computational Requirements

The residue equation for the identification technique
is given by

R=cly (27)

The C matrix has dimension N' where N' is the order of the sys-
tem being identified. The C matrix entries are given by

AT
J T -=X;T i
CiJ = %T?f fe d x(1) dt- £ *m+1 (T) (28)
J 0 m=1 Ai + 1 -
J
where the A,, J =1,...,N' are the poles of the system being

identified.”

For the identification technique, x(t) is of the form

-a,t
e 1 , t >0 (linear system identification)(29)

x(t)

or
§(t) (secondary system identification) (30)

x(t)

15




These x(t) expressions reduce CiJ to:

(1) for x(t) = e (uk > 0)
Cij _ 1 _ eAJT ) e-akT
(XJ + ak) kj
i —oyT
-7 (e - 1) (31)

m,. {1 +1-m
m=1(-ui) X}f )

(2) for x(t) = &(t)

c.. =3 _ 3 (™ -1
13 AJi m=1 (m - 1)s(x§ *1-m, (32)

It has been noted in previous work (References 2, 4)
that the C matrix tends to ba ill-conditioned, which hampers its
computational inversion. Two significant problems complicate
the inversion problem: (1) the dynamic range of the C;j4; and
(2) the near singularity of the C matrix when two of the N' poles
are nearly equal. The singularity problem is addressed in Sec-
tions III.B and C while the dynamic range problem is addressed
below.

The computational requirements of inverting the C
matrix are basically determined by its dimension. The dimen-
sion of the C matrix is determined by the number of poles of the
system being identified. Consider a nonlinear system whose
linear transfer function has N poles. The dimension of the C
matrix is thenN x N. Identification of the second-order trans-
fer function involves the identification of the residues of the
second-order response, Y2(s). The number of poles of Ys(s) is

N' = N (g + % + L) + E—Lk—%—ll (33)

where L is the number of exponential signals composing the input.
For the general case where L = N,

N' = 2N (N + 1) (34)
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Figure 2 plots N' as a function of N. It is noted that, for a
10-pole linear system, the calculation of the residues of Yg(s)
: involves inversion of a 240 x 240 matrix. The dimension of the
C matrix for second-order identification grows rapidly with the ;
number of linear system poles. ’

The dynamic range of the CiJ entries becomes signifi-
cant as the dimension of the C matrix“increases since the Cj
entries are inversely proportional to AJ-,for i=1,...,,N'., This
is demonstrated below.

W i

et

For identification of the residues of Ya(s), the input
x(t) is given by

x(t) = Ry 6(t) (35)

where §(t) is the unit impulse. The Cij entries for this input
are given by

Ciy = R ek : il (36)
137 "a xJI m=1 (xj)i‘”l'“‘(m-n!

Suppose the system response of interest, Yo(s), has a maximum
pole/minimum pole ratio = 10. Further, assume that

o AL i \ihnl o MM AW

-10 < AT < -1

J
or that T = -l/Amin.

For the minimum pole AJ min !i

PRUIUPPNIO S

5 C,y =R ———--1-9-1 : 1 ] (37) ’
! e [(-1) me1 (-D' (m - 1) | !

l : For different values of i, CiJ is given by

1 1.37 Ra
? -1.63 Ra

10| -0.35 R, A
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N; DIMENSION OF C MATRIX FOR Y »(s)
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Figure 2.

3 4 L] 8 7 8 9 10 n 12 13 14

N, NUMBER OF LINEAR SYSTEM POLES

Number of Poles of Ya(s) as a Function of the
Number of Linear System Poles

18

AW Ve T S R TR S

—.

———_ -~




e TR ‘n

P I

For the maximum pole XJ max

m-~-1

38
(m - I)J 38

Again, for different values of 1, Cij is given by

C R [e-1o é (
13 "a | (210)F  me1 (1)1t

-1)
1-m

1| Cyy

1 | -0.1

2 0.09
10 | 1078
10 | 10-100

The dynamic range of the Cy entries for a C matrix of
dimension 100 is approximately 10100, For N' greater than 100,
the dynamic range is even greater. This dynamic range can cause
significant difficulty when the inverse of the C matrix is evalu-
ated. For a typical general-purpose computer, the maximum com-
putable dynamic range is 1076 (10-38 to 1038). Furthermore,
matrix inversion involves multiplication and division of pairs of
matrix entries. The resultant product or division must be in the
allowable dynamic range, which implies that the individual matrix
entries must be well within the dynamic range.

For a system with two poles of its linear transfer
function with a ratio of 10, the computer limitation constrains
the class of systems to those with N < 4. This problem can be
alleviated somewhat with scaling but not significantly.

A method of reducing the dimension of the C matrix must
be found to ease the computational 1imitations. This requires
that the number of poles Yg(s) be reduced.

A significant reduction in the number of poles of Ya(s)
results if L = 1 instead of L = N, where L is the number of ex-
ponentials used in the input function. For I. = 1, the number of
poles of Yz(s) is given by

NCeN(F+P (39)
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This is plotted in Figure 3 along with the plot for L = N. It is
noted that the number of poles of Yg(s) is significantly less for
L = 1.

It is recalled that L = N was required in order to
generate a linearly independent set of equations from the resi-
due of the poles at s = -aj + ak,, 1 = 1, ,L: ko = 1, ,N.
These equations can also be obta%ned by using L =1 and exciting
the system with N individual inputs and recording the response
to each input. This obviously complicates the identification
procedure but does reduce the magnitude of the matrix inversion
problem,

If the approach is adoptea (L = 1), then the identifi-
cation procedure is modified as follows. The system is excited

by the input x(t) = e ®1'  The resultant output is of the form

M N o
Y.(s)= £ £ A
2 k=1 k,=1 kyky [(“1 ta )(2y +a +oa )

1 1 2
(? 1
‘Is - (a +a, )
ky kg

2 1
(ay + a2, ¥(a, + a, J)Is + (a, + a, )
1 k't k, 1 kg

2

+
(al + ak2)(2a1 + akl +

1
a, )@;+ ZaD]
2

(49)

The number of poles in Yg(s) above is (N/2)(N + 5) + 1. The

A quantities of the form Ajy, i = 1,...,N are identified
di}egtly from the residues of the poles at s = 2a3. The

Akiko quantities of the form, Ay £ #m, £, m=1,...,N are
identified directly from the resTdues of the poles at s = ag + a..
This procedure identifies N + [(N - 1)/2]N Akqkp quantities.

-Q
The system is then excited by the input x(t) = 2
The resultant 2(s) has {(N/2)(N + 5) + 1 poles but the contribu-
tions from N + EN - 1)N/2] poles are known and may be subtracted
out from the second-order response. The resultant Yo(s) has
2N + 1 poles. The resultant C matrix is reduced to order 2N + 1,
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This process is repeated for each input x(t) = e 1 )
i = 3,...,N. Each process results in a set of equations involv-
ing the residue at the poles s = - a3 + akyg. The first applica-
tion involves inverting an (N/2)(N + 5) + % matrix while the re- ‘
maining (N ~ 1) applications require inversion of a 2N + 1 matrix. k

The advantage of this approach is the reduction
achieved in the number of poles of Y2(s). This eases the compu-
tational complexity of matrix inversion. The primary disadvant-
age of the technique is that the identification measurement proc-
ess must be repeated N times in order to identify hz(tl,tz).

Another alternative approach to reducing the number of
poles of Yo(s) without significantly increasing the measurement
process is to initially excite the system with an input, x(t) =

e-alt. The residues of the poles at s = Ai + XJ, i, 3 =1,...,N,
are evaluated to determine the appropriate Ak K quantities. The
1

IO TRE ¥ SN

system is then excited with an input 2
N —ait
x(t) = ¢ e
i=1

Since N + [N(N - 1)/2] Axyko quantities have been identified
above, the contributions of the associated poles can be sub-
tracted from the total response. The resultant response has
(3N/2) (N + 1) poles. This is a reduction of 25 percent or
(N/2) (N + 1) from the original second-order response obtained
with

N -ajt
x(t) = L e . _
i=1 ‘
Although the order of reduction is not as great as that

achieved by applying the input x(t) = e %1% N times, the identi-

fication measurement process need be repeated only twice.

The basics of these approaches to the identification
process are summarized in Table 1 for comparison purposes.

The best approach for the identification technique is
dependent on the system under test. The number of linear system
poles and the ratio of the maximum to minimum poles dictate the
complexity of the matrix inversion problem and, in turn, deter-
mine which of the above approaches will maximize the performance
of the identification technique. Therefore, selection of the
best approach must wait until the linear portion of the system
under test has been identified.
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Another potential approach to reducing the computa-
tional complexity is the frequency range separation technique of
Jain and Osman (Reference 2). This approach divides the fre-
quency extent of a given system into a set of frequency ranges,
e.g., low frequency region, middle to high frequency transition
region, and high frequency region. The system is excited by an
input signal that is approximately matched to the frequency
region of interest and the integration time is selected consist-
ent with this frequency range. The identified transfer function
is then a representation of the system transfer function in the
specified frequency region.

This approach assumes some a priori knowledge of the
poles of the system transfer function in order to permit fre-
quency region separation and determination of the number of poles
of the system transfer function in each region. Since, for the
nonlinear system identification technique of interest in this
study, the order and pole locations of the second-order response
are known, the above requirement is satisfied. The input func-
tion for the nonlinear system identification technique,

N -ait
x(t) = T e ’
i=1

could be divided into the frequency regions of interest and ap-
plied separately for each frequency region. For example, if

N = 6, and Y2(s) is divided into three frequency ranges, then
the identification procedure is conducted as follows. Three
sets of measurements are taken, each with input

2 -ait
x(t) = ¢ e
i=1
where the aj are selected consistent with the frequency region
of interest. The three sets of measurements are then collec-
tively used to solve for the Akxiko quantities in the normal
manner.

The achievable reduction in computational complexity
using this approach is dependent on the characteristics of the
system under test. If the poles of Yo(s) are distributed uni-
formly in frequency, then the number of poles of Yg(s) in each
of three frequency regions is N'/3 and a one~third reduction
in the size of the matrices to be inverted has been realized.
It is necessary to point out that the price of this reduction
is the need to perform the identification procedure three times
instead of once.
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3. Numerical Integration Techniques P

The results of the implementation feasibility portion
(Part I) of this study indicated that significant accuracy was
required of the numerical integration technique to achieve sat-
isfactory technique performance. The results indicated that the
primary source of inaccuracy in the integration was the quanti-
zation error introduced by the A/D converter. This will be the
case independent of the numerical integration technique used.
However, the results of Part I of the study also indiceted that
the Simpson's rule of numerical integration technique introduced
numerical inaccuracy for higher-order systems. The reason for
this inaccuaracy was the fact that Simpson's rule reduces the
number of samples on each successive integration. Simpson's
rule of integration (Reference 2) is given by

7yt av = {bo2) y(0) + 4y(dT) + 2y(28T) + 4y(3bT)
: + ... % 2y((2n - 2)AT) + 4y((2n - 1)AT)
+ y(2naT) (41)
where
AT = (b - a)/2n = time between samples
2n = number of subintervals between data points,

Each integration using the Simpson's rule integration
technique results in a reduction of the number of samples that
can be used for the next integration. This is illustrated below.

Consider the outgut samples y1(0), y1(T), y3(2T),...,
y1(2nT), where nT is the n h sample and T is the sampling inter-
val. The integral of yj(t),y2(t), as obtained using Simpson's |
rule, is given by the samples

¥5(0), ¥5(2T), yo(4T),...,v,(2nT).

It is noted that there are only nT samples of yo(t)
whereas there were 2nT samples of yj(t). As this output is suc-
cessively integrated, the time distance between samples increases
and the numerical accuracy of the integration technique decreases.
This will have an adverse effect on the performance of the ident-
ification technique, especially for higher-order systems.
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A way of alleviating this decreasing-number-of-samples
problem is to interpolate between samples output from Simpson's
rule of integration. For instance, in the above example, Simp-
son's rule produced an output at t = 0 and t = 2T, namely,
¥2(0) and y5(2T). Interpolating linearly between samples yields

¥5(2T) + y,(0)
yp(my = 2 -2 (42)

To determine the impact of this procedure on the performance of
the identification technique, this procedure was added to the
computer simulation of the identification technique. The com-
puter simulation of the identification technique was discussed

in detail in Part I of this final report (Reference 1). The sim-
ulation was run for two systems, a two-pole and a four-pole sys-
tem. The results are presented in Tables 2 and 3. The perform-
ance of the direct application of Simpson's rule is included for
comparison in Tables 2 and 3,

The results of Table 2 indicate that, for a two-pole
system, the interpolation procedure slightly degrades the per-
formance of the technique. The results of Table 3 indicate that,
for a four-pole system, the interpolation scheme offers slightly
improved performance for A/D converters with 20 bits or less of
resolution. This improvement will continue to be evident as sys-
tem order increases. These results suggest that the numerical
integration technique be modified to include this interpolation
method,

B. MATRIX INVERSION/SCALING TECHNIQUES

The primary computational problem of the nonlinear system
identification technique is the matrix inversion involved in
solving the residue equation.

The matrix to be inverted has entries given in general by

. X (T)
c LM _mrd (43)
13 xji m=1 “j)
where
T xj('r -1)
PJ(T) =1 e x(1) drt (44)
0

For the second-order system identification, x(t) = 6(t), a unit
impulse which reduces the matrix entries to
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A,T
c., = & J : ™ - 1

- = _ (45)
VR R S

This expression can be rewritten as

2
E
i
3
i
§
i
I
E

ther ;
Raadd Lo a s T LR RPN )

AT 1 mm -1

r T RTINS AR Y s n gy ¢

= 1 - A ‘
Cij il I ol oI (46) 4
3 : - ;o
But since
T = (O rnm -1
ed = % (47)
ey (m - 1)

for XJ real, the Cij entries become

) o (2 T)m -1
Ci= 71| L, ho T (48)
A5
or m ]
L e (AT .
- _1 1
cyy = ;:F-mii — (49)

This expression serves to illustrate two basic problems with the
numerical inversion of the C matrix. First, the dynamic range
limitation of a digital computer 1limits the number of terms -which
can be used in a given summation. Also, it is clear that if two
Ay quantities used in the Cj4 expression are nearly equal, the

Cy4 terms become nearly equai since the m! quantity tends to re-
duce the difference between the CiJ entries.

B B At N PR WS s

This numerical similarity between the Cij entries causes the
major problem incurred when attempting to invert the C matrix.
Several approaches toalleviating thisproblem have been postulated
(Ref. 2) and these provide some relief but do not eliminate the
problem. The dynamic range of the matrix entries provides the
major limitation and avoiding this problem requires intricate :
programming which essentially corresponds to scaling quantities i
after each operation. This is a long and involved process, and
the design of such a program is beyond the scope o0f the present
effort. However, it remains an important area to consider in
future efforts because it may help to eliminate a major limita-
tion of the application of the technique. The other techniques
discussed in Reference 2 have been used to invert matrices which
have the numerical structure of the C matrix and they offer some
relief to the existing problem. These techniques are reviewed
below,

H g

n ———
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First, it should be noted that standard matrix inversion
techniques perform well when the C matrix is not nearly singular
and/or large enough that the dynamic range limitations of the
computer are exceeded. This was demonstrated in References 1
and 3 for two-, four- and eight-pole systems. The postulated
approaches shculd be applied only when the standard techniques
fail to perform satisfactorily.

The initial technique to aid in matrix inversion is called
"adaptive scaling'" (Reference 2). This technigue depends on
row and column scaling to alleviate the problem caused by matrix
entries which differ widely in magnitude. If it is desired to
invert a matrix C, the first step is to do a row and column
scaling on C, transforming it to

b ¢

Co = PCQ (50)

where P and Q are diagonal scaling matrices. The entries of the
P and Q matrices can be chosen as follows. Consider the P
matrix. The P;; entry is computed as follows:

P, = n {(C)ij} 1/ny (51)
qualifying
entries

where the qualifying entries of each row are determined from
those CiJ entries where

=M

ABS (Cij) > ay; * 10 (52)

h

where ay = max ABS (Cij) (largest entry of it row)

J

m is chosen by the user

n, = number of CiJ entries that exceed o, * 10°™
threshold

The scaled C matrix entries are then given by

' C
i
C - fr"‘L" (53)
°15 Pi1 Yy
The inverse matrix C"1 is found from

-1 1
Co

This involves evaluating three matrices as opposed to one
but the two diagonal matrices are easily inverted.

=Qlc¢op (54)
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In addition to the row and column scaling techniques, there
are several perturbation methods proposed in R:ference 2.
These involve forming the matrix A from

PSP

A= Co + €D (55)

where C, is the scaled version of the original matrix and D is a
diagonal matrix whose entries can be taken as those of the diag-
onal of A, Th2 constant € is chosen to be suitably small such
that C is invertible. (Selection of ¢ is discussed in detail in
Reference 2.,) Then, the inverse of C is given by :

Sh PO AT [T S Y g

cla@a-em?

= a1+ ¢ A"lpals ez

(cIpy2cl+ .. (56)
' ¢l is tound using A'l, ¢ and D, all of which are known. A"l was
found using standard matrix inversion techniques.

A problem with this approach is that C-l is not found in
closed form and then numerical accuracy becomes a question.

The techniques were exercised using the computer routine
provided in Reference 2, These routines were obtained from Mr.
Daniel Kenneally of Rome Air Development Center who received
them from their originator, Dr. V. X. Jain (Reference 2).

The computer routines were exercised for the second-order
response of a system with the linear transfer function given by
2.8069192 x 10°
s +0.011550998 (27) x 166
8
2.7368441 x 10 (57)

8 + 10.616986 (2m) x 166

H(s8) =

The input to the system was

: at ayt
\ x(t) = (e 7 *+e ™)y (58)

where a, = 107, a, = 1.75 x 107 rad/sec. The resultant second
order response, Y3(s), has poles at

L2 S0 OO CER MR AR TR S (T ST 0 Y D L
v - L L it LT ST .
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Ay = -0.011550998 (27) x 106

g = -10.616986 (2r) x 10°
: = 2 ), =-0.023101996 (2) x 10°
g . g =2 Ag = -21,233972 (27) x 10°
Ag = Ay *+ Ay = -10.628537 (2m) x 10°

Ay = -1.603100429 (27) x 108

Ay ® g + A, = -12.20853543 (27) X 108

Ag = ap + Ay = -2.796762502 (27) X 10°

A =ap; * i, " -13.4021975 (27%) x 106

(]

2a, = -3.183098862 (27) x 10

ik e
>
[y
o
(]

1

= 24, = -5.570423008 (27) x 108

n
>

o

|

a + an = -4.376760935 (27) X 1068

1l
>~
L}

(59)

The C matrix entries are given by

i ™ - 1
= l
i+1-m 1,3 v

,12
A msl (m - 1)! A

- (60)

T was set to 600 x 109

second for this example.

t The computer routines were exercised by varying the dimen-
sion of the C matrix from 8 to 12. In each case, the poles used
werae Ai, j=1,...,matrix dimension. The results are given in

Table The computer routines evaluate the accuracy of the in-
; verse as ftollows. The auxiliary matrix Bo is formed as
) B, = cCTl -1 (61)
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where C is the original matrix. The RMSE is defined as

N N ‘9
RMSE = [ I (B, ) (62)
i=1 j=1 ij
which is the sum of the squares of all the entries of Bo‘
1

Note that By = 0 if C*~ is the exact inverse of C. Also in-
cluded in Table 4 is the numerically evaluated determinant of the
C matrix,.

TABLE 4. MATRIX INVERSION RESULTS

C Matrix Root Mean Determinant
Dimension Squared Error of C Matrix
8 0.149 x 10-7 0.346 x 10-10
9 0.383 x 10~° 0.124 x 10-14
-3 =17
10 0.44 x 10 0.999 x 10
11 0.21 0.222 x 10-22
12 1010 0

The results of Table 4 illustrate what happens as the matrix
dimension increases. The two poles, A5 and X5, are nearly equal
which causes the C matrix to be nearly singular. This condition

becomes critical as the dimension increases above 11. The results

of Reference 2 indicate that a similar matrix of dimension 12 was
inverted. It appears that these computer results were generated
on a computer whose dynamic range exceeds the 1038 to 10- capa-
bility of the computer used in this analysis.

Further it should be noted from the work of Reference 4 that
standard matrix inversion techniques were able to invert this
matrix when the dimension was 8 or less.

These techniques offer some potential relief from the matrix
inversion problem encountered when using the identification tech-
nique. The dynamic range of the computer used to invert the
matrix, however, remains the dominant limitation. A scaling of
individual operations is perhaps a way of alleviating this prob-
lem but this is an extensive process. It appears at this point
that the most viable way of increasing the applicability of the

[ —
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identification technique is to find methods of reducing the order
of the second order system response, Yg(s). The primary focus of
this effort, therefore, has been to examine ways of reducing the
order of Y (s) without restricting application of the identifica-
tion technique. These techniques are evaluated in the following

sectigns.
C. POLE APPROXIMATION APPROACH TO REDUCING ORDER OF Yz(s)

The application of the identification technique to practical
systems increases in difficulty as the ratio of the highest break
frequency to the lowest break frequency of the linear system in-
creases. The reason for this is that the poles of the second-order

response include poles of the form

Ay F Ak
where the X\, 1 =1, ..., N are poles of the linear portion of

the system.

and kk, £, k=1, ..., N

If, for the system of interest,

kz + Xk = kk

for some £, k combination, it becomes extremely difficult to
solve the residue equation

R = Cc 1y (63)

where C is a matrix with entries of the form

a,T
J i X (T)
C,y=Sp - m+ 1 (64)

where aJ = A2 + Ak, Al, etc,

If two of the aJ are approximately equal, the C matrix is nearly
singular and is‘extremely difficult to invert using standard

matrix inversion techniques.

To expand the applicability of the identification technique,
it is necessary to find a method of alleviating the computational
problem discussed above. The approach to be taken in this section
is to use the approximation

Xi + XJ = XJ if Xi + XJ ¥ XJ.
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The question then is to determine the impact of this approximation
on the identification procedure.

The first step 1s to derive the functional form of the second-~
order response, Y, (s), for this approximation. The approximation
must be treated cgrefully to insure the correct expression for
Yz(s) is obtained. This is demonstrated below.

Assume that we have a system output given by
A A

1 2 i
The corresponding time function is given by i §
-t -Aagt E
y(t) = A.e + A,e (66) P
1 2 1
o
If xz = ll + €, then . §
—et, Mt -
y(t) = (A; + Ay e ") e (67) | §
T
and for €-0, -
-Alt ! i
y(t) = (A) + A, e (68) P
and !
(A, + A,;) i
~ 1 2
Y(S) - s + xl (69) %
.5-,
Therefore, Y(s) is approximated by a single-pole system. %
i
However, assume that the system output is of the form 3
B B !
Ay = A Ay = A i
' - B _ 2 1 1 2 g
Yis) = (& Ay) (8 + Xy,) s + 2y M Ao (70) !
The corresponding time response is given by 1
-A,t -A,t ;
' _ B 1" 2 1
y'(t) = XE_T—T; (e e ) (71) ]
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If 12 = kl + ¢, then, as ¢+0

B _
(s + Ap)?

Y (8)

and

-Alt
y'(t) = Bt e

In this case, Y(s8) is approximated by a double-pole system.

The approximation for x + A

The second-order response, Y3 (s;

= XA; in Yg9(s) must be made be-
fore the expression for Yz(s) is expaAd

(72)

(73)

ed into partial fractions,
2), is given by

M N L
Y,(sy,8,) = L L A
27172 k1-1 k2-1 i j=1 klkz
1
s, + s, - 2a
1 2 k2 1 1
(s1 + Sp = 8 - 8y (s ay Y(s, - By ) sy + a; J\s, + aJ -
1 2 2
(74)
Expansion and simplification of Yz(s1 82) yields EZ
|3
M N L L Aklkz
2(81:92) Lk (ETF e (e, T |
kl-l kz-l i=1 j=1 i kz J k2
S, + s, - 2a
1 2 k2 1
(8 % Sg = o - a )| (51 = 2y, )(Sp = 8y ) b
- 1 1
(s1 - akz)(s2 + aj) (s1 + ai)(s2 -8y )
+ 1 (75)
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Association of variables yields

M N L L Ak s - 28,
Yp(s) = T I I I 3 i(f - 57— 2
k1=1 kp=1 i=1 j=1 i k2 J k2 ky k2
1 1 ) 1 . 1 1
s - 2ak s + (uJ - a, ) s + (ai - 8, ) s + (ai + uJ) :
2 2 2 :
J (76)
é' Equation (76) involves products of transforms. Specifically,
£
N!’ A
% M N L L kK, 1
Es Yz(s) = L L L L (a, + a2, ) (a, +a, )| s - (a +a, )
é; k1=1 k2=1 i=1 j=1 i k2 J k2 kl ko
P s - 2a s - 2a ;
H k2 kz ;

" fs-(a, *+a, J)l[s * (a, -a, )] [-1(a +a )]s + (a, - a, )
( k, * %k, 3L 3 kz] [ kK, ¥ %k, ) [ i kzj

< mRECRpAN T

g

s - 2a 3

N “2 (77)

B - oy *ay J][s * (o *+ay)] L

? Since oy # ak1 for any i, k, and ay + “J ¥ ak1'+ ak2 for any ;
’ i,3, k1 and k2, Yz(s) involves poles which are of first order for %
the li + AJ = xj situation. 3

Therefore, the approximation to be made is

Ay + A, =2

1 2 2 for X2>>)\1 (78)

in the expression for Y,(s). Y,(s) then consists of simple-order
poles. The functional Porm of ?z(s) remains the same under the
approximation.

The next problem to be addressed is the generation of equa-
tions to solve for the unknown Ak K quantities. The general
172

approach is to:
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identification technique to be modified to allow generation of
the appropriate equations to solve for the unknown Aklkz- The
derivation of a new technique to Eenerate equations is addressed |4
below. In general, there are (3N4/2) + (N/2) nonzero Akiko tO

be determined. The poles of Yg(s) are given by

(1) Identify the A i=1, ..., N from residues of poles

&t S = -ZXi PR~

{4

(2) Identify the Agp,2 #m, £,m=1, ..., N from residues |3

of poles at s = - (Ag + X\ ]

(3) Identify the remaining Ak1k2 from residues of poles ;:

8 = -aj - Akg, 1,k2 =1, N. |3

4

The approximation implies that there are some Apm, L # m, &, i 4
m= 1, ..., N that cannot be identified from the poles Ay + Ap K
since Ay + Ay ® Ap for some &,m combination. This requires the }
§

g.

0k e A e,
Wit cdman

FORSA S PR Py

s = a +a, ,k,=1, ..., M k, =1, ...,N
kl kz 1 2
= _ = = i
] ay * akz, i 1, , L; k2 1, N :
= o - i = ) .
s ay aj, i,J 1, ..., L. (79" ;
First, consider poles of the form s = a, + a, = ZAQ;
1 2
£ =1, ..., N. The terms in Yz(s) corresponding to the pole at
ZAQ are given by
L L 1 1 (80)
Y (s) = I I A ‘ — 0
2948 i=1 j=1 LR (aJ + kl)(ui + xz) s 2%1

Let the residue of the pole at sz, as obtained by the pencil-of-
functions method, be denoted by 8,,. It follows that

L L

1
A,, =8B z z -
2L Le 121 j=1 [(uj + "2)(“1 + Xy

This procedure results in identification of N of the coefficients,
and is unaffected by the approximation.

-1
J L =1, ..., N. (81)
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The general procedure at this point is to consider the poles
of the form s = aky + akp = Ag +Ap where 2 # m and 4,m = 1,...,N.
Since Ag, = Amz for L,m 3 N, the terms in Yga(s) corresponding to
the pole at Ap + A, are given by

L L
Y (s) = T L A
2.m i=1 §=1 m

a, + uJ + sz
' (aJ + xz)zui EVICHE ay g )

ai + a, + 2A 1
+
(aj + Am§(ai + Am)(ai + aJ + Al + Xm) S - Ay - Am . (82)

Let the residue cf the pole at Ag + i, as calculated from the
pencil-of-functions method, be denoted by Blm‘ It follows that

L L a, + a, + 2)
Aom “8em )2 I TS +>\)(ai+)\J)(a — T F )
i=1 j=1 J L i L i J L m
-1
oy + o, + ZX
MR CPER W IR +x;)L(a e T
a i .
h] m J % m g¢m=1,...,N
L #m,L < m.,
(83)
This procedure results in identification of N(N - 1)/2 of the co-
efficients provided Ay + Ap # Ap for any m,2 = 1,...,N.
When g + Ay = X is the situation, specific A%p, &,m
=1,...,N, 2 # m, cannot be identified in this fashion
Assume that fhere are K combinations of ¢2,m, 2,m =1,...,N
such that Ag + A\ = There remain N4 + K unknown Ak ko, quanti-
ties to be identifié& If the input consists of N decaying expo-
nentials, the residues of the poles s = -a, - A,, i, =1,...,N

can be used to identify N2 - 2K unknown Ak Kk q&antities. Also
identified are K gquantities which consist %fzsums of unknown

A K quantities. This is illustrated in the following identifica-

1 2
tion technique example.

39




s

-
et s

TR

Consider a nonlinear system whose lineur impulse response is
given by: .

3 At
hy (t) = I R, e t >0 (84)
1 i=1 i -
Re {Ai} < 0.

The problem is to completely specify the parameters of hz(tl'tz)
where

M N ak1t1 + akth
ho(t,,t,) = = I A e - U(t, - t.)
2lty,ty Koml ko1 KiKp 2 1
1 2
M N akltz * akztl
+ I I A, e Uty - ty). (85)
k.=1 k=1 =1%2
1 2
The parameters are M, N, a,_ , a and A .
ky' "ky kykgy

The number of residues, Ak1k2' that must be determined is
given by

w=NM_M2_‘_.ll=27. (86)

We know from previous analysis that
s=N(N-12=32)2-=12 (87)

elements of the set {ap; + ak,} have zero residues. The elements
of {ap, + akz} = {aklkz} whicﬁ have zero residues have the form

AL o+ Ay - A, 1 # k; J# k. Identifying those elements of
{ayg kzi that have this form yields the following zero value
Akléz quantities

40
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(88)

We can group all the remaining elements of {ak,x,} to specify all
the distinct elements of {ak.k,}. In this groip“below we include
the (kj,kg) pairs that produCe“the given sum aky + ko,

a + a
k1 k2 (kl,kz)
. A (4,1) (5,2) (6,3)
.
¢ Ay (7,1) (4,2) (8,3) (3,1) (1,3) (2,1) (1,2)
é Aq (9,1) (10,2) (4,3) (2,3) (3,2)
le (1,1)
2A2 (2,2) (89)
2x3 (3,3)
. whe.re it has been assumed that
Al + Xz = Az
1t 23 = 23
Ag 23 = Xy
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We now demonstrate how the equations relating to Aki1k, are ob-
tained for the set of poles at (akq + akz). Assume that the
method of system identlification is applied and all appropriate
measurements are made. This means that a residue value is avail-
able for each distinct element in the set (ak1 + akz)-

We now consider the situation that arises for L = 3. The result-

ant expression for Y2(s) is given by |
1
10 3 3 3 .g
Y,(s) = I g T I A :
2 . k,k :
k1=1 k2=1 i=1 j=1 172 :
°i+°j +2a|.kl
(aJ + akl)(ai + akl)(ai + aj + akl + akz) ?3
/'/”_,‘_’—’A ;
) 1 _ 1 1 .
s - (a, + a, ) (a. +a,_ ), +a_ J)||s+a, -a i
ky kg 3 k' ko J k, );
}
[ 1 1 }:
o, +a, )(a, *+a )| ]|s+ao, -a kR
l i kl J k2 i k2 ]4
i
(a, + o, + 2a, )
. S ko - 1 .
Zaj + :salsz(ozi + akz)(mi + oy + ak1 + akz) s +a; *+ aj
90) i
The quantities Ayx,k,, for ki = k2, ki1,kg = 1,...,N are ;
identified from the po}eg s = -2A\gq, k3 ='1,...,N. This identi- i
fies All’ A22, A33. é
!

By considering each set of poles separately, equation (90)
can be expressed as three terms

10 3 3 3

Y, (8) = b z z r A
29 k.=1 k. =1 i=1 j=1 Fi1Kg
1 2
a, + a, + 2a
17 ko - 1
(aa; + a, J)(a, + a2, (o, + a, + a + a, ) s ~ (a + a, )
J kl i kl i J kl k2 kl 52




i
;
3 4
r
!
f 10 3
; = I T A, .+ ‘)(5‘2 + +
: ky=1 k=1 Ka¥z Jp(ag ey )8y *a, +a )
}
i—‘.
{1‘ ol
5 2(ay + 0y *+ 2ak1)
£ +
: (a, + JY(ay + 8, )(a, +a, +a, + a )
; %2 ‘kl 1 kM 2 ky k,
* Fz )(‘2 Y
: a, + & 20, + 2 + a
t 2 Ky 2 Ky ko

[~ 2(u1 +ag + 2ak1)

+

(an + 8, )(a, + a, (o, + aq + a + a, )

i 3 ky 't k,’ "1 3 kg k,
. [
: + 2

(ag + aki)(iaa + B, + akz)

L
; ( Z(a2 + ag + 2ak1)
S‘ +
1 L(a3 + akl)(a2 + ak17(a2 + aq + akl + agg)
£

-

1
. (91)
s - (a +a )
I ky ko

10 3 3 3
Y.(s)= © £ I T A
24 k,=1 ky=1 i=1 j=1 kiky

Eh T UUN e g

' a; + “j + Zakz
- |G+ 8, ), +a, )(a, o, +a,_ +a )
SR PEALE SRR PR LS U B T 3
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10 3 ! 2
= I I A ~—
o1k my kyk (a, * ) (2a, + a, + a,_ )
ky*1 kp=1 172 17 P T T R, T R
P -
2(0.1 ta, ¥ akz) A

+ .
(ap *+ 4, )J(a, + 8, Y(ay + a, + & +a, )
27 Myt 'k, 7 %1 2 ky sz

h
B 2(&2 tas ¢+ akz)

+
lag * 8 J(ag ¥ 9k27(h2 vog et “k2)

.
2 : 1
* -(aa + akz)(zas + akl + gkz)] (s T o, + aJ) (82)

And,
10 3 3 3 .
Y (8) = - L 3 L r A [
2343 ky=1 ky=1 1=1 j=1 kykg JlCoy * ‘kl)‘“i + “kz)

: *[c g )]
8 +ta, - a a, +a J)(a, +a
37 %k, 37 %) T B

3

s 5 e i s v s - O ALy Sty s ¢ LA e
.

anisel

1 (93)
8 + - 8
1 K,
Expanding equation (93) yields
10 3
Y, (8)= [ £ A 2 1
2343 ko1 k=1 ¥1¥p ’[£“1 R RICT" )] 8 *ay -y
2
r -~
M K 72( y >
a + a a + a 8 + o - 8
V2 kl 1 kzj 2 Kk,
i .
+ (a, + a ?(u + 4, ) 8 + 4
a - 8
S SRt Ty ¥ 37 Tk,

44

A s e

prv:




e o R T PR 1 S ST AR

st '

T

e v R o 1 T TR YTNPORITogn o X BT

N ] =

(ul + aRIT(az + ak;- 8 +a, - aka
’ r o 2 | 1

b, - akl)(uz + akz)- 8 +ag - akz
Yl 2 ] .

(ag ¢ &klj(az + tk;{ 8 +a, -'&k2,
* (o +a%(u +aj- s+a1~a

Rt Ty TRa- By PN 1 7k
M P %Ya +a, ) g8 + a1 - a

%2 T Bk 7003 T iy 2" "k,
R akj(ﬂg v st “;ls - "kzt oD

We now focus attention on equation (94) which
to obtain

10 3

can be simplified

)

1 1
Y, (s8)=-2 T T A
2 - k.k a, + a a, + a
2+3 ky=1 k=1 1°2 17 %k 1 1‘2/
3 +1a v 5 +a, - a
2 k2 3 k2 1 kz
1 1 1 1
+ + +
(a, +a_) o, +a a, + 8 g + 2
2 "% %1 T %, %27 %k, 737 Tk
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8 +qa. - & (o, + &, ) o, *+ a, + a
1 1
+ (95)
Gs + a.k 8 ¢+ 03 - akz

The previous analysis’hés shown that the unknowns involved in
equation (85) are

Agyr Rgpr Mgz Aggr Agys Agyy Agzs Agys Ao 90 Agys Agy Agy

If we consider the pole at s =- & + a; and follow the pro-~
cedure cdetailed previously, we obtain the equation from (95)

1 1 1
A + +
41 oy + a.4 (“1 + 8y a2 + a, °‘3 + al)

[ 4 1 1 1
+ A21 a1 + a, (a1 + a + a, + +a3 + al)

A+ - =
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which reduces to

A A A A

A
41 21 71 31 81 = 1
+ + + + » D
c1+a4 a1+az a1+a7 a1+13 u1+a9 1
(87)
S8imilarly the pole at s = - @, + 8, ylelds the equation
1 1 1
A [ ] + A [._______ + A [______.]
41 Zuz + a45 21 ag + az] 71 a, + a,
+ Agy | —2—] +a 1 =B, (98)
31 oy + a4 o1 Zaz + a9) 2

Similarly the pole at s = -a3 + 8,y yields the equation

1 ' 1 1
A + A —— + A ——————ee
41 [ 0q + a4)] 21 [a3 + aé] 71 [(a3 + a7)]
1 1 =
+ A —— + A —_—- =D (99)
31[a3 + a3] 91 [“3 + ag] 3
From the previous analysis

a, = 0 a, = Ay

(100)

From the constraints on the analysis, it is known that
ag # 8, % 8y
and that our approximation requires

8g = 85, 85 % By
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Equation (100) reduces equations (97) and (99) in matrix form, to

o -

of - - -
1 1 1 .
al @, ta, A+ oag Agqy 51
1 1 1 -
A + A =D
°2 “2 + a7 az + a9 71 21 2
1 1 1 '
A., + A D (101)
“3 Oaq + 8, a3_+ ag. i 91 31d I 3 ]

Previous analysis (Reference 3) has shown that this set of
equations is linearly independent and therefore can be solved for

Agyr (Agy ¥ Agy) and (Agy + Ag,)

If this process is continued by considering the pole at s = ~a

+ a5, an equation similar to equation (97) is obtained, namely
with the a, quantity replaced by a2. Similarly, this occurs for
the equati%ns (98) and (99). Under these conditions, equation
(101) beccmes

- - - =3 -
1 1 1 1 F A 5.
al al + a5 al + al a1 + a3 42 4
1 1 1 1 = !
v A + A = D
EP %y + as aq + a, a2 + a3 52 10,2 5
1 1 1 1 A 5.
a3 G + ag a3 + ay a3 + aIJ 12 (5]
L - -
| As2
(102)

IfT L = 4 in this case the above set of equations would be linear-
ly independent and solvable for
A

A and (A52 +

42’ B1g0 A3y A10,2)

Knowing A12 (also A21) permits identification of A71 from previous
analysis.
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By considering the pole locations 8 = -o4 + ai =1, 2, 3,
the following matrix equation, similar to (101) and (102) is ob-
tained:

[ 1 1 1 1 A (5. ]
oy ay + ag a4 + ag oy + a3 43 7
1 1 1 1 A 5.
@y Ay *ag a, tag a, + a, 631 _ 8
1 1 1 1 A ﬁ"
La3 aq + ag aq, + ag a3 + a3. 83 | 9 i
i Ay (103)

If L = 4 in this case, these equations are linearly independent
and solvable for

A A A A

43’ 763’ 83’ "13

A problem may arise if aj + ag = aj - a3 (ag = -a3) for all 1.

If this does not occur, then all the Ak1k quantities have been
identified except for A52, A0, The sum . Ags2 + A10,2

has been identified. However, %5 can be found from the residue
of the pole at s = -}y. This portion of the response is given by
equation (91). The only unknown in this equation is A

Once Asp is knuwn, Ajg,2 is also known. Therefore all %he unknown
Ak1ko Qquantities have been identified.

The problem at this point is to demonstrate that this can be
achieved for all N.

We now attempt to develop a technique which works in general
for all values of N. For convenience we order the 1Ay,
i -1,...,N,0f the linear impulse response such that

Xl < kz < k3 < A4 ce. < AN

The identification technique will yield a set of equations at pole
8 = -aj + Ay given by

A

N+K' klsl
g1 T, D (100
1s

Cirt b % neles e

1
]
k]
;
i
i

A vl T i .
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where Dy is the residue of pole 8 = -ay + Ay with all known
quantities subtracted out. The index ils corresponds to those
values of ki for which Ax,kp 18 unknown.

The N + K 8K qg quantities are given by

akls -0
= 2N
= Ag -2y E
s ]
= Ay =~ A ;
) lj. K'10f these values, (105) ,
J=N, N-1,...,N - K' + 1, j

The ) entries correspond to those poles that arise because
of the pole approximation. For example, if xz +z1 = ll, then
kl =, in the above set.

1s

“._,_.. ..
R I3 Rl i taca | aMERLLIL] A g uts

—- e

Similarly for Gy, we obtain

N+K" Akls2 *
: 18" . p (106) .
-1 (oy +a ) 2
. s=1 (% T %
where ;
i
Kn < xv ' .
i 3
and %,
a =0 ii
Ko NN I g
1~ *2 . &
= A3~ A | 3
=\ Xy ’
= XJ} K'" of these values, J= N, N-1,...,N - K" - 1. j 3
\ i
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Continuing this process yields

A

N;KN ( ky N
a6, +a )

J k1s

= Dy (107)

s=1

where

A
=
A
A
73
1A
=~

and

AN-1 " *n

XJ}J.NrN-lr"‘rN-KN+1

Solution of these equations will result in identification of
a number of the Ag,k-, quantities. However several Ayp.,k, coeffi-
o tete

cients will combin gether, and only a sum of coeff nts is
obtained. This 1is illustrated below.

Assume that K' = 1, This implies that
A\p + Ay “Ayand Ay + Ay ¥ Aq fori =1, ..., N - 1.

The equations derived are

+
Nzl kil .
s=1 %j * "k 1 (108)
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where
8 = 0

1s
= Ay -}y

"Ane1 " M
= Ay - A7 Ay
If L = N, then a set of linear independent equations is gener-
ated that results in solution for all the Ak 1 quantities except
for a pair given by 1s

A + A

x+3,1 M

N K, 2
—_ 15" (109)

where

1}
D
[ory
)
P

These equations are linearly independent and can be solved
Similarly a solution is obtained for the

directly for Ak 2
1s
quantities A , +.., A .
k193 leN-l
For kz = N, the equations are
N+1 Ak N
L 3 T a = DN (110)

g=1 kls

i

3
)
2,
2
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where

If L=N+ 1, then a set of N + 1 equations in N + 1 unknown
is generated that is linearly independent and solvable for the

AleN .

The quantity AlN is identified from the equation involving

A This results in identification of all the unknown Ak K
1

klsN.
in hz(tl,tz).

2

Suppose next that K' = 2, (A, + A, =X, A + Ay 0= Ay o).
The resultant equations are N 1 "N’ "N-1 1 N-1

A

N+2 klsl
T -_ =D (111)
- (a;, + a ) 1
s=1 J kls
where
a = 0
Kis
BRI
= Az -

Solution of these equations leads to identification of N - 4

A quantities and the summations

kikgy
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A + A2

N-1,1 N®=-N+2,1

Ay, 1 * An%on+3,1

For k_, = 2, the equations are

2
N Aklsz (12
e=1 (%3 ¥ akls) 2

These are solved directly for the Agy2. Similarly for
k2 = 3, N. This implies that Ay N and Ay N-1 are identified
provided N > 2. Using the symmetry, Ak1kz Axokq, ki,k2=1,...,N,
yields solution for all the Akikg.

Assume that K' = 2 but, in this case, the poles are such that
XN + Al = AN and xN + Xz = XN. The resultant equations are

A

N+2 kl 1
T S =D (113)
s=1 aJ + ay 1l
1s
where
a =0
kls
Ao~ X
AN ~ Al = XN
This yields solution of N - 2 Ak, quantities and the summa-
tion
Ay,1 * AN2 _N+3,2

For k2 = 2, the equations become

N+2 leZ

(114)
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where
A
kls = (
A\ - Ay
A3 - xz

Solution of these equations yields all of the unknown Aklkz
except for the summation

Ang * AN2 N+, 2

For kg = N, the equation becomes
A

N-1 k
1sN
1 —==SN - (115)
s=1 %3 * Bk N
where
A = 0
kls
M- Ay T AN
, A2 -'XN = -XN
‘-1~ N
) The solution of these equations identifies all Ak quanti-
ties except for the summation, 1sN
Aon,N * A3N-1,N
unknown

This yields solution for AN2 which implies that the only

Ak k2 at this point are

1

Aon,n 30d Agn 4y
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i
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An equation involving Agn and A3y-1,N can be obtained from . t‘
the residue of the pole at s = -2a3. This equation has the form

A A

2N N 3N-1,N oL
; + - = H (116) L
(a1 + XN)(2u1 + Al) (u1 + AN)1§a1 + Xz) 1 o
where H, = residue at pole at s = -2a,. This equation can be - ‘
rewrittén as :
A A
2N, N 3N-1L,N_ _ o, (117)

+
2&1 + kl 7&1 + A2 1

The two equations involving A and A can be repre-
sented in matrix form as 2N,N 3N-1,N

o ol -
1 1 ] Aoy n ] DNJ
- (118)
1 1
| T T+ g | |Asn-1,n) |
(8] (A = [z] (119)

For linear independence
det B # O (120)

For det B = 0, it is required that

= (121)

or xz = Al, which is not permitted by assumption.

Therefore, it is possible to solve for all the Ak K quantities
even if K'= Z. 172

Further analysis has not led to a method of demonstrating
that the Agjio coefficients can be identified for an arbitrary
number of po%e pair approximations (xi + AJ = kj). One of the
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reasons for this is illustrated in the analysis for two pole pair
approximations (K' = Z). There are many combinations of potential
pole paires to achieve K' = 2. As K' increases, these combina-
tions increase sigrificantly in number, and it is necessary to
show that a set of linearly independent cquations can be found.
This process rapidly becomes complex to show, in general, that
these eyuations can be generated.

At this point, it should be noted that significantly more
equations are generated than are used in the identification pro-
cess. It is possible that some of these equations can be used to
form a linearly independent set of equations to solve for the
unknown Ap,x,. The problem is that a method has not been found
for deronstrating that a linear independent set of equations in-
volving the unknown Ag,k, quantities can always be obtained using
the identification tecﬁ %q The algebraic nature of the equa-
tions has, to date, prevented linear independence of any set of
equations other than those generated from poles at 8 = -a4 + Ako,
i=1,.,.,L; kg = 1,...,N from being proved in general.

The above analysis implies that the pole approximation
(Aq + x, x ) is a reasonable approach to alleviating the nu-
merical probiem associated with poles of this type. For one- or
two-pole pairs, it has been shown that the Ak ko quantities can
be identified. For more than two poles, each system identjfica-
tion problem must be considered individually. Although a general
identification technique is not defined here, it is probable that
there will be a sufficient number of linear independent equations
to sclve for all the Akjkp quantities. Each system identifica-
tion problem must t : considered individually to find a sufficient
number of linearly independent equations.

D. DOMINANT POLE CONCEPT

As noted previously, the identification technique becomes
significantly computationally complex as the number of poles of
the linear system increases. The second-order impulse response
of a weakly nonlinear system is given by

a, t, + ak t2

M N k, "1 0
ho(ty,ta) = £ © A e U(t, - t.)
2(ty:ty ky=1 k=1 Kk, 2~ %4

2
M N akztl + axltz

+ I A, e Uty - ty) (122)

k,=1 k=1 K1Kg

1 2
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For a given syvstem, it is possible that this impulse response
is dominated by a limited number of Ak1k2 terms. This implies
that hg(t,,tg) can be represented by fewér terms than are given
in equation (122). This reduces the number of coefficients that
must be identified and will ease the computational problem
associated with the identification technique. This section in-
vestigates how this approach may be implemented to reduce the
order of the second-order impulse response.

The second-order system response, Y2(s), has been shown to
be given by equation (19). The primary focus on reducing the
order of the identification problem must be on reducing the order
of Yg(s) This is because the order of the residue equation
R = C-1 Y is directly determined by the order of Y2(s).

All of the poles of Ys(s) do not contribute equally to the
system output, ya(t). It is possible that some poles of Y3(s)
contribute negligibly to the output. If these poles can be
identified, then the second-order response, Yg(s), can be
approximated by aresponse Yz(s), where Yo(s) does not contain the
poles of Yo(s) that negligibly impact the output.

The basic problem with identifying which poles of Yo(s) have
2 negligible impact on the output is that this requires knowl-
edge of the Axyko quantities that we are trying to ildentify.
This implies tha% the poles of ¥Yg3(s) that ha-c a minor impact on
the system output must be identified by other than analytical
means. However, it is unlikely that this can be accomplished.

A potential method of reducing the order of Yg(s) by identi-
fying the negligible poles is presented here. The number of
poles and the location of each pole of Ys(s) are known from
identification of the linear transfer function, Hy(s). The pro-
posed technique is as follows. First, the nonlinear system is
excited by the input_x(t) = e %3t The resultant output, Ya(s),
contains N{(N + 5)/2] + 1 poles. The normal procedure 1is to
integrate the input and output N' times and solve the result-
ant equations for the system residues. The suggested procedure
is to assume that the number of significant poles of Yo(s) is
N" < N'. The input and output responses are integrated N'" times,
the appropriate inner products are formed and the resultant equa-
tion for the pole locations is solved. If these pole locations
agree with N'" of the predicted pole locations, it can be assumed
that an N'" pole approximation of Ya(s) is a valid representation.
If the pole locations do not agree, then N'" is increased by 1
and the above process is repeated. This is continued until there
is good correlation between the identified poles and those pre-
dicted from H,(s)

58

sy L L X [ e ST




R LR _n L A

i
%
|
3

T i i A Ppe s T

e

In order to demonstrate that such a technique is feasible,
consider the follcwing example. Suppose we have a system with

three poles, where
2.8069192 x 10°

8 +0.011550998(27)(10°)
2,73e8441 x 108
s - 10.6161986(2n)(10°)
R -

3

+ ) (123)
s -1.25(27)(100)

R(s) =

The residue, R3, will be left undefined for the moment. This
transfer function was inserted into the computer simulation of
the identification technique. (This simula-ion was described in :
detail in Reference 1.) !

The simulation assumed that the system of interest was a two-
pole rystem. The residue value, R3, was varied in amplitude to
determine under what conditions H(s) could be accurately repre-
sented by a two-pole system.

The results of the simulation are given in Table 5. These
results indicate that for R3 < 104, identification technique
identifies the other poles and res’ jues of H(s) with less than
0.25 percent error. For these cases, R3/2.8069192 x 105 < 0.035
and R3/2.7368441 x 108 < 3.6 x 10-5, which indicates that the
poles of H(s) at s = -0,_.11550998(2r) x 106 and
8 = -10.618986(21) x 106 dominate the transfer function., As the
residue Rq approaches and exceeds the magnitude of the residue
of the pole at 3 = -0.01150998(2n)(106), the identification tech-
nique degrades in performance as it attempts to identify the two-
pole modei of H(s). The reason for this is that, as R3 increases,
H(s) is not dominated by the two poles; therefore, the proposed
technique is no longer a valid approach to identifying H(s).

Another approach to reducing the order of Y2(s) and subse-
quently easing the computational problem is to apply a dominant
POle concept to the linear portion of the system. The linear
transfer function of the system of interest is assumed to be of
the form

N R1
H,(8) = I —— .
1 i=1 8 - }1

i s =

It is possible that Hi(s) is dominated by several of the N poles.
For example, suppose
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Hy(s) =

1 T -

. - (R1sz + Ry 2
R+ R
= (Ry * Ry)| 5= X (8 - 1)

1,

(124)

Ir

g gy~ o A TR TR TR AR <

or if

: Rira* R Xy
Ry * Ry

2 (125)

then Hl(s) could be represented by

LI L L IRE

(Ry + Ry)

Hits) = =0,

£ or

, (Ry + Ry)
Hi(®) = 5=

@

(126)

respectively. 1In these cases, the two-pole linear transfer func-
tion Hi(s) can be represented by a single-pole transfer function.

netremry

? This is significant because the order of Y2(s) varies approxi-
: mately with N2, so that any reduction in N achieves an even
greater reduction in the number of poles of Yz(s).

The impact of this approximation on H2(s31,s2) or ha(ti,t2)
ot is presented below. Consider an exact system representation given

: by

% 2 R

y i

: H(s) = ¢ (127)
1 j=1 8 = Ay
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The resultant hg(ty,t3) is given by

AL (t, + t,) Ay ty + A, ¢
- 1'*1 2 1“1 2 ‘2
hz(tl.tz) All e + A12 e
: Ag tq + Ay t, Ao(t, + tg)
2 "1 172 2' "1 2
| +.A21 e +:A22 e
i A, t Aat
i 1 72 272
| + A31 e + A32 e v
* Agp e
! (Ag = Xq)ty + 3y t,
* Agy e UCty - ty)
Aq(ty + t,) Aq ta * 2. ¢
171 2 1 "2 2 "1
+ Ane +A12e
Ao t, + A, t Aqa(t, + t,)
2 2 1" 2\t 2
tAge Ay €
Ayt Ag t
1 "1 2 "1
+A319 +A3ze
(Aqy = At + A, ¢t
1 2’/%2 2 "1
+A42e
(Mg = Aq)t, + A, t
2 1’%2 11
It
e B R e W
+ 2
1 2
then Rl

The resultant hz(tl'tz) is given by

(128)
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' oo Mt Tt
' Aq(ty + t,) Aq t
1(ty *+ t, ' 1 45

"[An e tAgy € UCty - t3)  (120)

-

The approximate expression for hz(tl'tz) implies that

1

11

A, = A

11

A = A

21 31

12 = Apy = Agp = A

for h2(t1,t2) = hz(tl,tz).

A = A = A

42 51 = 0 (130)

32

The approximate expression for hg(tj,ts) retains only two of
the original Axi1ko coefficients, meaning that the approximation
(R1 A2 + R2 kl)}(ﬁl + Rg) = X9 implies that six of the Ak kg co-
efficients are zero. 1In order to see how this approximation
comes about, we consider the following example, which is a
simple single nonlinearity (no-memory) nonlinear system, as
shown in Figure 4.

o
Cf i(t) Y(s) g = n§' K, v"

Figure 4. Simple Single Nonlinearity (no-memory) Nonlinear System

It has been shown (Reference 3) that the second-order impulse
response of this system has the form
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N N N R.R,R
K, I f I 14

1=1 =1 je1 \P1 " 3y = Ay

. [e(xl SADt Ay Ty eAJtl gty

N N N Rlainj
-K2 z z ) WA W y
1=1 i=1 j=1 1 i J
.[ Mty O - APty Ayt 4 AJtz]
e - e
t2 < tl .
(131)
where it has been assumed that the linear impulse response of this
system is
N Ait
hl(t) = Ri e t >0, (132)
i=1 -

For purposes of example, it is assumed that N = 2 and that

Xl t 12
hl(t) = Rl e + Rz e . (133)

If ha(ty,ty) is expanded for N = 2 and put in the standard func-
tional form given by

5 2 akltl + ak2t2
ho(ty,to) = T T A e U(t, - ty)
R N LY 21
1=1 Ky
5 2 %k, 4y * ' ty
+ L z Ak k. © U(t1 - t2)

k,=1 k2=1 172

where the Ak Kk quantities are defined as follows:
172
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- Ty

2 | Ry Ry
Ayp = KRy™ - 5T Y T

1 2 1
R R
: 1 2
A = A = - K,R,R — + —
12 21 27172 [ 2 1]
" R R
2 2 1
A = K,R -— +
22 22 I xz Al - 2A2]
" R R
2 1 2
A = K,R — + —
31 271 hxl AZ ]
" R R
2 1 2
A = K,R — +
32 272 ;xl xz]
A 41 = 0 ,
- R R ;
2 1 ;
A = K,R,R + == :
42 27172 Lxl - 2x2 xz] :
" R R
2 1
A = K,R,R — t — 2
51 27172 -kz - 2A1 xl]
A52 =0 (135)
The dominant pole assumption was that
Ry A, + R, A
1 "2 2 "1 -~
Rl 7 RZ - Az . (136)

This requires that

Rl >> Rz and Rl Az >> R2 Al

If this assumption is applied to the resultant Ak1k2 quantities,
we obtain

|
!
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3

3 ;

A K Ry §

11 X ?

R, R i

1, R :

Big = Apy = - Kz“le[x ¥ Al] 3

3 ;

|

Aoz = X :

1 :

. :

! §

31 X :

i

2 b

. KaRy R, 3

32 xy 3
Ay, = O

e
[

Ry Rl]

A = K_R.R - 4 =
2

_ K2R1 R
51 )\1

Agy = O (137)

For Rl >> R

2 ;

9 We have
A11 >> A22

>> A

o

11 12

11 >> A3z

11 >> 842

11 > 4s1

31 >> A22 \

> P P> > P

>> A

31 12

Agqy >> A3y

Azq >> By4p

A >> A
31 51 (138)
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which reduces the second-order impulse response to:

3
R k1t1+)\1t2

1
hy(ty,tg) = Ky |- X €

1
3
R A, ¢t
1 1 "2
+—k;.-e U(tz-tl)
R A, t, +a  t
+ K 1 1 2 171
2 - e
1
RS Ay by
4--;;—e U(t2 - tl) (139)
If hy(t) 1is approximated by
xl t
hl(t) = R1 e t >0 (140)
using the dominant pole concept, the resultant hz(tl,tz) is given
by
, K, 313 Ay ty Ay ti * Ag ty ]
hz(tl'tz) = Xl e - e U(tz - tl)
3
Ky Ry My ty Ay to ¢t Ao Ty
————-—_X Le - € U(tl-tz)
1 (141)
or
A t. + A4 t A, t
! 11 1 "2 1 72
hz(tl,tz) [All e + A21 e ] U(t2 - tl)
A th T A4t A, T
1 72 171 171
* [A11 e * By € ] Uty - tg)
(142)
where K2R3
Agy = - 1
11 xl
3
A = Ko Ry
21 xl (143)
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It is noted that, given the dominant pole assumption,
hz(tl,tz) = h2(t1,t2) (144)

This analysis demonstrates how the approximation in hy(t)
propagates to hg(tjy,tg). It supports the approach using the
dominant pole approximation on the linear transfer function.

It is noted from the analysis that the dominant pole is pres-
ent because Hy(s) has a pole and zero which tend to cancel each
other in the s= 0 + ju domain. This illustrates why this approach
cannot be used on Yg(s) since the unknown A¥ ko Qquantities pre-
vent the zeros of Yg(s) from teing known. %is prohibits associ-
ation of pole-zero pairs for possible cancellation and subse-
quent reduction in the order of Y2(s).

E. RESTRICTED FREQUENCY RANGE CONCEDPTS a

There are several methods ¢f reaucing the order of the second-
order response which we cizssified ar restricted frequency range
approaches. These appreozches busicelly modify the input or the
system output 1o euse the identilication yroblem.

The primary restricted frequeucv spproach is to use a filter
on the output of the systam urder tes:, The purpose of the fil-
ter is tc selectively restvwici the sy.scem output to a particular
frequency ranga. Consizner the <xample :shown below:

rNONLnNE./\R o Fys) |
SYSTEM

|

FILTER

For second-orcer impuzsc response coasiGerations, the equivalent
system is as saown below:

—— oy f-""“ﬁ
20 ! Ya(s) Fy(s)
—’L i

.

¢
%
;
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The system output becomes Yg(s) Fy(s). Fi(s) must be band-
limited with respect to Yg(s). The number of poles of Yg(s) Fi(s)
. depends on the number of poles of Yo(s) within the bandwidth of
¢ F,(s) and the number of poles of F.(s). For this technique to
: oYfer any advantage, the number of poles of Y2(s) Fl(s) must be
less than were present before filtering.

The poles of Yz(s) are of the general form

AN

Ai i=1,...,N
Ao+ A g,m=1,...,N
m
-0y + Aj i,j=1,...,N
-0y + aj i,j =1, N

The o; are selected by the identification technique user. Proper
selec%ion of the aj can cause the poles of Y2(s) to bunch up in
certain frequency ranges.

Consider, for example, a two-pole system with poles A3 and Ag
(xg > X1). The poles of Yo(s) are

ll -2a1
Xz -(a1 + a2)
A+ A -2a
1 2 2
-a  + A 2\
1 1 1
-0q + Az 2X2
-az + xl
—a2 + Az

>
|

2 - P1 M
@y = Pg Ay
ay = P3 Ay (145)
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Then the poles of Y2(s) are
M

A

P1M1

2X1

201X1

(1 + pg)xy

(pgy + 1)y

(pg * £1)2y
(pgt 1)ry

(og + 0902
202k1

(pg *+ Pglly
ZQall

Assume that we select Py = 4.5, Py = 1.2, Pg = 3.9, then the
poles are

Al' 211, 2.2A1, 2.4X1, 4.5A1, 4.9X1, 5.1A1, 5.5\

7.8)\ 8.4 ax

) S B 1

These poles are bunched in essentially two groups:
]

(ll - 2.4%1) and (4.5x, =+ 9X1).

1

If a filter with a 3-dB bandwidth of approximately 2.4), is used
on the output of the system under test, the resultant oatput
contains the contributions of only a limited number (in this case,
four) of the poles of Yz(s).
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The performance of this approach was evaluated using the
computer simulation of the identification technique. The system
considered was, once again, that given by

5 8

2.80689192 x 10 2.7368441 x 10

H(s) = 6 6
8 + 0.011550998(2n)(107) s + 10.618986(27) x 10
(148)
The filter transfer function was assumed to be
o4
= 1.2 x ¢
H,(s) TEE v, (147)

where the pole location y, was left variable. The simulation was
to evaluate the poles of & two-pole system representation of
H(s)H,(s), where the two poles to be identified are the two low
frequéncy poles, -0.011550998(27) x 109 and vy,. The pole of in-
terest is that at s = -0.011530998(2n) x 106 since vy will be °
selected by the user and will be known.

This procedure was simulated for vy = 0.51 (27) x 106 and an
input

- . 8
x(t) = e 0.2(21) x 10t

The results are tabulated in Table 6. These results indicate that
this approach produces acceptable performance if the integration
time is increased above that used for the original system identifi-
zation. This 3% to be expected because, in this case, the identi-
fication technique is attempting to identify two low frequency
poles instead of one low and one high frequency pole; this, in
general, will require longer integration times.

This procedure was repeated for an input given by

8
x(t) = e-2n x 107t

The results are presented in Table 7. These results basically

agree with those of Table 6 and support the need for increased
integration time.
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The identifientipa technique can then be used to evaluate the
residues of these poles. Once these residues are known, the
technique can be repeated without using the filter. The known
portion of Yo(s) can be subtracted out before processing and the
resultant identification problem is reduced to one of lesser order
(in this case, 8 instead of 12).

An alternative approach at this point, once 4 of the 12
residues have been identified, is to attempt to select the ay to
separate the remaining poles into distinct groups and use a dif-
ferent filter to limit the number of poles of Y,(s). This essen-
tially repeats the original identification techgique approach
but on the reduced order system.

The key to the technique is to use a filter which effectively
attenuates the contributions of the poles outside the frequency
band of interest. Consider the example shown below. The system
response 1s as shown in Figure 5.

K - e a» o> o> ow

fL fH f a=o
Figure 5. Example System Frequency Response

The filter should have a break frequency equal to or slightly
greater than f;,. The amplifier response should be down con-
siderably at frequency fy to effectively attenuate the frequency
response of Yn(s) above fy. An attenuation of at least 20 dB
seems reasonable for adequate performance of the technique.

Another approach to reducing the order of Yo(s) for identifi-
cation purposes is presented here. It has been shown (Reference
2) that the pencil-of-functions identification technique can be
modified to divide the frequency spread of the system output
into three bands: 1low, midrange and high. The identification
technique 1is applied by selecting an appropriate input frequency
fairly well matched to one of the frequency ranges given above.
This procedure is repeated for each frequency range. The total
transfer function is obtained by matching the functions at the
transition points between frequency ranges and slightly modifyin,
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pole locations and gain constants. This technique has been shown
(Reference 2) to produce accurate results while reducing the ;’F

order of the identification problem,

X Appropriate selection of integration time for the identifica-
B tion technique can be used in special cases to reduce the order

] of the identification technique. Consider a two-pole system with
4 poles A1 and A2, where A2 >> A1. If a short integration time is .
i used, e.g., T = 1/)1, the system output will be impacted very \

’ little by the low frequency pole. 7This is because the contribu- }”
tion from the pole s = A, is essentially constant over the inte- | =
gration period. This implies that the variation of the system
response over the integration period is due to the high frequency

pole only.

In order to demonstrate how such a technique would perform,
we once again consider the system

2.8069192 x 10° } 2.7368441 x 108
s + 0.011550998(27) x 106 s + 10.616986(27) x 108

(148)

? B f i il o
J»..“m,'h’.Jl,.."J 2 i

s i

H(s) =

The analysis of Reference 1 (Part I of this study) demonstrated
that an integration time of 9.6 us resulted in generally favorable
performance of the identification technique. For this analysis, :
this integration is varied from 0.0024 us to 2.4 us, and the per- };
formance of the identification technique is investigated. The .
simulation 1is set up to identify a single pole system, in this 1
case, the high frequency pole at s = -10,616988(21) x 10°. J.

The results of this simulation are shown in Table 8. The re-
sults indicate that, if a short integration time (compared to the
reciprocal of the low frequency pole) is used in the identifica-~ _
tion processing, then the high frequency pole and corresponding 1
residue of H(s) are accurately predicted. The results indicate {
that at least a 100:1 reduction in integration time from the ¢
original 9.8 us is required to effectively isolate the high fre- T
quency pole response. These results suggest that the integration ¥
time be less than 1/(high frequency pole) for accurate identifica- :

tion performance.

2 Limdrrt oo

. L g

This integration time approach is related somewhat to the
wide-band processing approach of Reference 2. This is a good
technique to use on wide-band systems where there are a set of
low frequency poles and a set of high frequency poles. Once the
high frequency poles and residues are identified, the normal
identification procedure is followed and the contributions of the
high frequency poles are subtracted out from the system output be

fore pencil-of-functions processing.
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F. SEPARATION OF RESPONSES i 8

An important requirement for the identification technique is
the ability to excite the nonlinear system such that the linear
response 1is isolated from second- and higher-order responses and :
that the linear plus second-order response is isolated from 3

" third- and higher-order responses. This requirement impacts both
the feasibility of implementing the identification tecnnique aua
the computational complexity involved in identifying the non- {
linear impulse responses. This critical issue is addressed in {
detail in this section. -

The basic assumption on which the identification technique
is founded is that the nonlinear system can be excited in such
a manner that the system response is linear. Techniques of vali-
dating linear operation of a nonlinear system are addressed in
detail in Reference 3. Basically, the nonlinear system is ex-
cited by a sinuscidal signal of amplitude A and a spectral analy-
sis of the system response is obtained. Amplitude A is adjusted
until the spectral content of the system output shows that the
magnitude of second and higher order harmonic frequencies is
significantly below that of the fundamental component. This pro-
cedure permits determination of the linear impulse response of
the nonlinear system, hj(t). Identification of hij(t) leads, as
has been shown previously, to identification of the natural fre-
quencies of the second and third-order impulse responses. There-
fore, it is a key element in the identification process.

If the nonlinear system carnot be excited such that its out-
put response is linear, the identification procedure increases
in complexity but the second-order impulse response, h (t1, t2)
can still be identified. This fact is demonstrated below.

Assume that the nonlinear system can be excited such that

only yj(t) + y2(t) can be isolated from third- and higher-order
system responses. Define yg(t) as

va(t) = y1(t) + ya(t) (149)
and
Ya(s) = Yy(s) + Ya(s). (150)
The poles of Y,(s) are given by ;
s=a +a, ; K, =1, ... M; k,=1,...,N P
Ky ky' "1 2 :
§ = —a, + akz; i=1,...,L; kz =1,,,.,N
76
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S = -ay - a s i,j =1 L
s = -ajy; i=1 L
g = akz; kz = 1,...,N (151)

There are 2N(N + 1) + N poles if L = N, as is generally the
case. Since N may not be known, assume that L = 1, Then, the

number of poles in Ya(s) is

2
B = 2N + 2 + Eiﬁat_llg g + ON + 2 (152)

These poles are of the form

=1,...N

If the identification process is applied to the response,
y1(t) + ya(t), then B and the poles of Y a(s) will be identified.
By associating the identified poles with the above list, it will
be possible to identify thely, 1 =1, ,N. The number of poles
in the linear system, N, can be found from B.

This association will be done as follows. In the list of
identified poles, there will be N pairs of poles having the rela-
tionship

(153)

where ay, ag, are identified poles. Furthermore there
will be identif&ed pole pairs of the form

an = -al + ap (154)
where a9 is known from the input. It is noted that sufficient
data is available to identify the poles Aj, 1 = 1, ,N of the

linear system. The residues of the poles of the linear transfer
function can be found from the residues of the poles of Ya(s)
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corresponding to s = -aj. Then the Ag,k, quantities of ha(t1.t3)
can be found in the normal way.

This is shown here.

Given a nonlinear system with a linear transfer function
given by
N

Hl(s) = J

— (155)
i=1 8

%4

T
and an input X(s) given by

L
X(s) = T ;—%iaz (156)

the linear response is described by 3

Yi(s) = Izq Iz‘ et 1 R (157)
1 -1 i-ql01 + a S - a S + ay
j=1 i=1 3 J

The second-order response is given by

M N L L 2

Ya2(8) = z z L L Ak K Ci
k2=1 k1=1 i=1 j=1 172

ai ‘l'CI..j + 2ak1

(o, ¥ akl)(ai ¥ ak]“)(ai TR

1 _ [ 1
+a ) (o, +a,_ J)(a, + a, )
1 Ky | k't Tk
1 _ 1

s + (a, - a, ) (o
J kg

1
s + Y&i - aké)

+ a, )
1 K

s - (ak

+a ) (a, +a )
i ky J k,

L

oy + uJ + 2ak2
+
3 7 akz) (a; + akz)‘(ai tug *oay
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If the response obtained is yi(t) + ya(t), then Y (s8) + Yg5(s) ;
contains poles at s = akg, kg = 1,..,Nwhose residues are of the :
form s
2 :
RCsi |, &4 * o) Ay 3 G 3

oy + aJ (ak)gzai) (ai + Ay + aj) :

The pole of Y (s) + Yz(s) at s = ~ay has a residue given by

D s b o 1 8

N RyC
L __.ai.}—-
=1 % " %

If L = N, then there are N equations of the form

Rlcl R Cl R,C

2 N™1
+ — .. — =8
oy + a4 oy + 8y - aq+ ay 1
R, C R,C R.C, @
5 1+Na + 2 g L+ a~—§—g— = By (159) ?
N 1 N 2 N N :
or in matrix form ;
C1 Cy €y . ] . ] i
oy + ay ay + &y oy + ay 1 1 ‘
C2 CZ C2 . o e ;
a2 + 2, a, + a, oy + By 2 2 i
! N N ... _Sx R 8 3
A ay +* a ay + a ay + a N N i
1 | TR %N T 32 T I A I (160) |
g or [A] [R] = [B] in matrix form. i :
5 ,
4 For linear independence, it is necessary that 4
A :
1 det [A] # O (161)
:{ é
) i
. 1‘ |
' \
3 79
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This has been shown in Reference 3 provided

ay # aJ for any 1, j = 1,...,N; &1 # J
oy # aJ for any 1, j = 1,...,N; 1 # j

as 1s the case for the identification technique.

Although the procedure is more complicated, the linear and
second-order impulse responses can be identified even 1f the
second-order response cannot be isolated from the linear response.
The practical application of this procedure may be complicated by
the need to determine 8. This is a potential numerical accuracy
problem. However, in theory at least, the linear response need
not be isolated from the second-order response.

Another complication in the identification procedure arises
if the second-order response cannot be isolated from the third-
order response. Assume that the linear impulse response of a
nonlinear system has been identified. If the system cannot be
excited such that the response yj(t) + yo(t) is obtained, then
the identification technique will use the response yji(t) + y2(t)
+ y3(t), where it is assumed that fourth and higher order re-
sponses are negligible compared to third order. For convenience,
we define

Yp(t) yz(t) + y3(t) (162)

and

n

Yb(s) Yz(s) + Y3(s) (163)

where y,(t) has been subtracted out using knowledge of Hi(s) and
h1(t). The poles of Yp(s) are given by

s = a + a +a, ; k,=1,...,J;, ko =1,... 4 %k, =1,,..,N

kl kz k3 1 2 1
§ = - oy -0y + aks; i,k =1,...,L; k3 =1,...,N
8 =~ ay - aj - ak; i,j,k=1,...,L
5 = a +a ; k, =1, M; k, =1, ,N

k1 k2 1 2
§ = ~ a4 + ak ;1 =1, L k2 = 1, ,N

2
<
80

y s e o gl ™
' >

- T - 5. ey LN K
M RN T T VR IRY VI ACR! By o




s = - ai - a i,j = 1,L

J;

s = - qa, + a + a

i kz K ’ i)k = 1,N; k2 = 1,-..,M (164)
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All of these quantities are known, since it was assumed that
hi(t) has been identified. The problem is to identify the Axk ko
of hi(tl,tz). The poles of Yu(s) which contain information about

1 the KiKg are given by
4 - . .
£ s = ak + ak ; k1 = 1,...,M,k2 = 1, .,N
i 1 2
. $ = - 0y + akz; i=1, ,L;k2 = 1, ,N
!
: Sz"ai-Qj; i,J=1,...,L
i The poles of Yg(s) that correspond to poles of Yz(s)are those
i for which
! a + a + a = a + a
5 ky kg kg Tky kg
{
} k1 =1,...,J; k2 =1,...,M; kl = 1,...N; k4 =1,...,M
! k5 = 1, N
and
; a, + a, = & ; k2,k4 = 1,...,N;k1 = 1,...,M (166)
1 2 4
These correspond to poles of the form
j=1,...,N
A, + A 2, =1 N §
2‘ J ? 1 ’ 1
- ay * AJ i,3=1,...,N (167)

If the residues of these poles are known, then a set of equ-
ations exists that involves pairs of Ak1k2 and Ck quantities.

i ——

1koks
The key question is whether the Ak,k, and Ckikgks quantities
can be determined.
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Suppose we consider the pole at s = A1 + Ag. The residues
involve the following quantities

A12> € 2,10 C 2,22 C1,2,N

This implies that there are N + 1 unknown coefficients in the
residue equation for the pole at s = Ay +~A2. It is necessary
to determine if these quantities can be solved for using the
residues of Yg(s) + Y3(s). It is shown in Reference 3 that the
Ckykoks Quantities of the form Cyjiy, Cijy, Cyy4, 1,3 = 1,...0N;
i# %, are identified from the poles of Y3(s) given by s = 2y
+A3+ A i i,3,k=1,...,N; 1 # j, j # k. Since these poles are
unique to Y3(s), the above Cjjij, Cij , and C i1 quantities can
be determined in the usual manher. 6nce theSe are known, the
Aj4 quantities are found directly from the residue at s = A7 + A2g.
Similarly, all the Akjks, ki, kg = 1,...,N ky # kg, can be found
from the poles of Ya(s) + Y3(s) at s = Akj + Akso.

TP Ty
L el L I

£
L e

atle SURT ] mwm »
PP SR

e e pap

R —— s+ - At ol ki o

In Reference 3, it is shown that the Ck1k2k3 are identified
from residues of the poles at

v s = 34, i=1,...,N
Ej s =20 + )y i, =1,...,N;i¢ 3
' s = A+ Aj * Ay i,j,k=1,...,N; i # 3%k
S = - oy + Xj + Ak i fixed, j # k; j,k =1,...,N
s ==-a; + xj j=1,...,N (168)

All of these poles can be used to identify the Ck kok3, 85 is .

normally done except for the poles at s = - o; + * 7 “We now i

consider the portion of the response Yo(s) + 3(s)Jdue to the ‘

pole at s = ~aj + Aj. The unknown Cklkﬁgs quantities are of the )
n

form Cklmn where k15N, m>N, n<N and m a are such that

tomramy
-t

14

p

4 = 169

d ami + ani Xl. ( )

t The unknown Ak Kk quantities are of the form Ak 1! Ak‘ 2,...A N

‘ 172 1 1 k1 N
where k1 > N and akl + aJ = xz. There are N pairs of (ami, a"i)
such that ami + an1 = Al. The portion of the third order response

due to the pole s = -ay + Al is given by
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»olae

' (é +Q
. ( ] Ck,myny g %
f

J C oy + a + 28
Yo (s) = I kymyPy m,
k,=N+1 ] oy + ak J=1 (CRC™ )(uJ m1)

o +a +
Zam

)

C
K,m,n
17272 -3

+
+a a,+a
nf] M2 ky 1 1 3 =1

(°1+am (ai+am2)

... ¥
+a a1+ak

n, i=1 j=1

o, +o +2a
177 My 1 1

‘a_ ta S+0 -2 (170)
My nN 171

(a +a N)(aj+amN) ai+aj<

The portion of the second-order responsé at s = 1 2
given by
M Ag 4 L Ag 2
Y, (s) = T _____l____ z ———-l——~— + 1
2¢c K =1 (al + ak ) 1i=1 (ai * al) (02 + ak )
1 1 1
L L Ag N L
1

L (o +ay NGy + 2, ) L T, + ay)
i=1 ‘%4 2 N k,’ Ji=1 L&y N
(171)

quantities and N2 unknown Agkikso

There are oN3 unknown Cklk
sg portion of the response.

quantities in the Y2q(s) + Y3c

is defined to be 0;. The

The residue at pole s = - o
éan b% written as

functional form of the residue
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C C c
3 g k,mn, a4 kalalp - kymyDy .
I S oN * oy N
L
3 J
N Akll Ay 2 AklN
) Yy * Yo +...%+ Y
- a, + a 1 a, + a 2 oy, + & N
Ky =N+1[01 ¥ By 2 ¥ %, N B
b

This can be reduced to

3C A Y 3C ] A Y
u kymaMiBy ¥ Kb ) [ CReMee 2 t M2 ),
= a; +a a, + a .
kl—N+1 1 kl 2 kl
3C 8 A Y J 3C B 3C 8
D I LI | T ky™% K1Ma"2 2
oy + a k,=M+1] o, + a a, + a
N kl 1 1 kl 2 kl
3ClillmNn B
T a, + a 1 (173)
3 kN
Let €y = Bl/yl, then rewrite equation (173) as
N 5Cx m.n, Ak, 151 3Ck m.n B1*Ak N €
17171 1 111 1 N
L a, + a Bl oot aN+ak BN
k1=M+1 1 k1 1
J 3Ck m,n 3Ck m.n B
1711 171711
Lo 8 +a. Brtt g va 0 T (174)
k1=M+l 1 kl N kl
Furthermore, equation (173) can be rewritten as
2
2N F.
D) ———l—~*3 = 8 (175)
i=1 @, *+ fJ
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where FJ = cklminiai + A for kj which have nonzero

k,i®
gl and €.=0 for i>N

g
;
}
!'
i
;
:
i

kymny

L

A similar equation to (175) is obtained for each value of
®j, i=1, ...,L. 1If L=2N2, then the identification technique
generates the equations

2 3
2N F E
T -—_—J— = § . : E

BT LRl SR IRIT LTI

; ; §F oo =g (176)

£ 22 F
o 2N

» g4

'L‘ X
y T

The set of equations in (176) was previously shown to be linearly %
independent. Therefore, the set of equations provides a unique }
solution for the % quantities.

There still remain N pairs of Ck1k2k3 and Ak 1ko terms which
have not been identified. These are of the form

3C + Ak 1?-'1

kymyny 1

P e vt < v e L e L

These quantities must be separated to completely identify
) and ha(ty t There is a need to find a way to

sepa}atgly 1dent1fy't%ese Ak K and Ck K.k quantities.
172 1™2™3

e

The only source for unique identification of the Ay, quan-
tities 1s the residues of the poles at s = -a, -~ a E%ege poles
are unique to Yo(s) and the residues involve $n1y he unknown
, Ax4ko, quantities. The problem is to demonstrate whether or not
i . th%sg residues can be used to generate a set of linearly inde-

f pendent equations to permit solution for the Aklkz' Consider the
pole at 8 = -2a1. The reaidue is of the form

et

;e Ny, A,
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1 N N

1
+ r L A " v
(200 + X3) ko =1 k=1 K'ikKg [(@y + By )
1 2 2
+
. 1 N N 1
+ I T A. 1 a, + a
(2a, + 1A,) k. N 1 k
1 2 k1N'=1 k2=1 1 %o 2

where kl', kK,", ... k N correspond to those values of k, for
which Apqk &re unkno%n. This equation involves N2 unkndwn Akiko
quantitiés. Analysis has not been able to show that this set

of equations is linearly independent or dependent. The equations
of interest for linear independence become

N C 2N c
1 N i, 1 ! i
20y * &y 429 &5 * Ay 20y * Ay jonyg Op Foag
N2 C
* o, F A a+ia=o
R I T
1 ? &, 1 %f Cy
0y + ay yoq @y v a8y 205 * Ay gy 0g By
N2 o
+ + 1 T i = (0
a2 + aN 2 al + ai
1=N2-N+1
L g c; L %? ¢,
Zay * Ay guq Ot By 205 F Ay yinyg Oyt oAy
N2 o
1 i
i Ymy Ay L, ay *oay °
1=N2-N+1

(177)
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If this set of equations implies cé-o, i=1, ..., Nz, then the set

of equations involving the Ak1k i8 linearly independent. Succes-
sive solution of these simultaneous equations does not produce a
tactorable polynomial to demonstrate independence. The resultant
equation cannot be solved and linear dependence or independence
cannot be shown. A similar situation exists for the unknown
Ck1k2k3 quantities and the poles at s = -aji ~ aj - ak that are
unique“to Y3(s).

This analysis has failed to demonstrate that there is no need
to isolate the second-order system response from the third-order
response. Therefore, it is concluded that, fotr a practical im-
plementation of the identification technique, it is necessary to
excite the nonlinear system so that the third order and higher
order responses are negligible compared to the linear and second
order response.

G. ALTERNATIVE IDENTIFICATION PROCESSING ALGORITHMS

The identification technique described in this report is based
on the pencil of functions approach to linear system ideéentifica-
tion. The first step in the nonlinear identification process is
the identification of the poles and residues of the linear system
transfer function. The pencil-of-functions approach is well-
suited to accomplishing this identification. The second step in
the nonlinear system identification process is the identification
of the residues of the poles of Y2(s). These poles of Yo(s) are
known once the linear transfer function is identified. The
pencil-cf-functions approach is still used, but it must be noted
that other potential methods of identifying the residues of the
poles of Y2(s) exist that might alleviate some of the computa-
tional complexity associated with the pencil-of-functions approach.

The basic problem at this point is to identify the Ry quanti-
ties in the equation

8
- -ekxt
yp(t) = I Ry e (178)

where yo(t) is the second order response of a nonlinear system.

In this equation, the ek are known, since they are related to the
poles of the linear transfer function of the system. A sampled
time history of yg(t) is obtained via measurement of the output of
the nonlinear system. The objective then is to use this infor-
mation to evaluate the Rg.
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A detailed review of several candidate algorithms for solving
this problem has been addressed in Reference 6. These identifi-
cation approaches include the least-squares method, orthonormal
least squares method, equality of derivatives method, equality of
integrals methodand the generalized integrated squared error.
Details of these approaches are given in Reference 6 and are not
repeated here.

The basic approach used in many of these methods is to sample
the time function (in this case, ys(t)) M times where M > B [B is
the number of poles in Ya(s) or natural frequencies in yz(tﬂ .
Then, each technique attempts to minimize an error function to
determine an "optimum" set of Rk coefficients. 1In general these
techniques require inversion of a B x B matrix to determine the
Rx coefficients. The matrix entries involve functions of the
e~€kt and in this sense are very similar to the technique used in
the pencil-of-functions approach. The advantage of the pencil-of-
functions method is that no approximations are used as is the
case with these overdetermined system approaches (M > B). Because
of this advantage and the rejuirement that a 8 x8 matrix be in-
verted by these other identification techniques, the pencil-of-
functions approach appears to be as good a candidate for this
nonlinear system identification technique as the others described

in Reference 6.
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